cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385197 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a noncomposite number.

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 7, 7, 8, 9, 11, 9, 13, 13, 14, 15, 17, 16, 19, 15, 20, 21, 23, 21, 24, 25, 26, 21, 29, 22, 31, 31, 32, 33, 34, 24, 37, 37, 38, 35, 41, 32, 43, 33, 40, 45, 47, 45, 48, 48, 50, 39, 53, 52, 54, 49, 56, 57, 59, 42, 61, 61, 56, 63, 64, 52, 67, 51
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2025

Keywords

Examples

			For n = 6, the greatest divisor of k that is a unitary divisor of 6 for k = 1 to 6 is 1, 2, 3, 2, 1 and 6, respectively. 5 of the values are noncomposite numbers, and therefore a(6) = 5.
		

Crossrefs

The unitary analog of A349338.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), A384058 (5-rough), A385195 (1 or 2), A385196 (prime), this sequence (noncomposite), A385198 (prime power), A385199 (1 or prime power).

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; a[1] = 1; a[n_] := Module[{fct = FactorInteger[n]}, (Times @@ f @@@ fct)*(1 + Total[Boole[# == 1] & /@ fct[[;; , 2]]/(fct[[;; , 1]] - 1)])]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2]-1) * (1 + sum(i = 1, #f~, (f[i,2] == 1)/(f[i,1] - 1)));}

Formula

The unitary convolution of A047994 (the unitary totient phi) with A080339 (the characteristic function of noncomposite numbers): a(n) = Sum_{d | n, gcd(d, n/d) == 1} A047994(d) * A080339(n/d).
a(n) = uphi(n) * (1 + Sum_{p || n} (1/(p-1))), where uphi = A047994, and p || n denotes that p unitarily divides n (i.e., the p-adic valuation of n is 1).
a(n) = A385196(n) + A047994(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = c1 * c2 = 0.92334965064835578762..., c1 = Product_{p prime}(1 - 1/(p*(p+1))) = A065463, and c2 = 1 + Sum_{p prime}((p^2-1)/(p^2*(p^2+p-1))) = 1.31075288978811405615... .