A385216 Greatest Heinz number of a sparse submultiset of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.
1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 4, 13, 14, 5, 16, 17, 9, 19, 20, 21, 22, 23, 8, 25, 26, 27, 28, 29, 10, 31, 32, 33, 34, 7, 9, 37, 38, 39, 40, 41, 21, 43, 44, 9, 46, 47, 16, 49, 50, 51, 52, 53, 27, 55, 56, 57, 58, 59, 20, 61, 62, 63, 64, 65, 33, 67, 68, 69
Offset: 1
Keywords
Examples
The prime indices of 12 are {1,1,2}, with sparse submultisets {{},{1},{2},{1,1}}, with Heinz numbers {1,2,3,4}, so a(12) = 4. The prime indices of 36 are {1,1,2,2}, with sparse submultisets {{},{1},{2},{1,1},{2,2}}, with Heinz numbers {1,2,3,4,9}, so a(36) = 9. The prime indices of 462 are {1,2,4,5}, with sparse submultisets {{},{1},{2},{4},{5},{1,4},{2,4},{1,5},{2,5}}, with Heinz numbers {1,2,3,7,11,14,21,22,33}, so a(462) = 33.
Crossrefs
A000005 counts divisors (or submultisets of prime indices).
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Max@@Select[Divisors[n],FreeQ[Differences[prix[#]],1]&],{n,100}]
Formula
a(n) = n iff n belongs to A319630.
Comments