cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A385169 Primes p == 3 (mod 4) such that the multiplicative order of 2+-i modulo p in Gaussian integers (A385165) is odd.

Original entry on oeis.org

331, 571, 599, 691, 839, 971, 1051, 1171, 1291, 1451, 1571, 1879, 2131, 2411, 2971, 3251, 3331, 3491, 3571, 3691, 3851, 4051, 4091, 4211, 4651, 4679, 4691, 4919, 4931, 5051, 5171, 5479, 5531, 5651, 5839, 5851, 5879, 6011, 6599, 6679, 6691, 7079, 7211, 7331, 7691, 8011, 8039, 8171, 8731, 8839, 9011, 9371, 9811
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

Primes p == 3 (mod 4) are precisely the rational primes in the ring of Gaussian integers.
Let ord(a,m) be the multiplicative order of a modulo m. (Of course if a and m are integers, it doesn't matter if the base ring is Z or Z[i]). For a prime p == 3 (mod 4), we have that ord(2+-i,p) is divisible by ord(5,p), and that ord(2+-i,p) divides (p+1) * ord(5,p). What's more, ord(2+-i,p) divides (p^2-1)/2 if and only if 5 is a quadratic residue of integers modulo p. (See A385165).
As a result, if ord(2+-i,p) is not divisible by 8, then ord(5,p) is odd:
- Of course this is true if ord(2+-i,p) is odd.
- If ord(2+-i,p) == 2 (mod 4) and ord(5,p) is even, then ord(2+-i,p)/ord(5,p) is odd, and so ord(2+-i,p) divides ((p+1)/4) * ord(5,p), then ord(5,p) is odd. This implies that ord(2+-i,p) is odd, a contradiction.
- If ord(2+-i,p) == 4 (mod 8) and ord(5,p) is even (we have ord(5,p) == 2 (mod 4) since p == 3 (mod 4)), then ord(2+-i,p)/ord(5,p) == 2 (mod 4), and so ord(2+-i,p) divides ((p+1)/2) * ord(5,p), then ord(5,p) is odd. This implies that ord(2+-i,p) == 2 (mod 4), a contradiction.
From the above paragraph, this sequence is also primes p == 3 (mod 4) such that ord(2+-i,p)/ord(5,p) is odd.

Examples

			8731 is a term since (2+-i)^635253 == 1 (mod 8731), and 635253 is odd.
8839 is a term since (2+-i)^57447 == 1 (mod 8839), and 57447 is odd.
9011 is a term since (2+-i)^2029953 == 1 (mod 9011), and 2029953 is odd.
		

Crossrefs

Cf. A385165, A385179, A385192, A385217 (the actual multiplicative orders).
A385188 < this sequence < A385180 < A385167 < intersection of A122869 and A385168, where Ax < Ay means that Ax is a subsequence of Ay.

Programs

  • PARI
    ord(p) = my(d = divisors((p+1)*znorder(Mod(5, p)))); for(i=1, #d, if(Mod([2, -1; 1, 2], p)^d[i] == 1, return(d[i]))) \\ for a prime p == 3 (mod 4), returns ord(2+-i, p)
    isA385169(p) = isprime(p) && p%4==3 && ord(p)%2

A385218 Multiplicative orders of 2+-i modulo p == 3 (mod 4) that are congruent to 2 modulo 4.

Original entry on oeis.org

30, 4290, 3710, 3150, 20090, 164430, 21114, 22490, 59514, 43494, 244650, 65110, 819930, 932190, 1011030, 1266750, 1405410, 533830, 1864590, 135470, 2266530, 79002, 946970, 3863190, 1039890, 4952850, 170178, 566202, 6277530, 1324930, 3091690, 9397290, 214314, 5054610, 3467950, 3511090
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

Primes p == 3 (mod 4) are precisely the rational primes in the ring of Gaussian integers.
Elements in A385165 that are congruent to 2 modulo 4.
By definition, a(n) is the multiplicative order of 2+-i modulo A385179(n).

Examples

			a(7) = 21114 since it is the multiplicative order of 5 modulo A385179(7) = 919, and it is congruent to 2 modulo 4.
		

Crossrefs

Cf. A385165, A385179 (corresponding primes), A385217, A385219.

Programs

  • PARI
    ord(p) = my(d = divisors((p+1)*znorder(Mod(5, p)))); for(i=1, #d, if(Mod([2, -1; 1, 2], p)^d[i] == 1, return(d[i]))) \\ for a prime p == 3 (mod 4), returns ord(2+-i, p)
    forprime(p=3, 1e4, if(p%4==3 && ord(p)%4==2, print1(ord(p), ", ")))

A385219 Multiplicative orders of 2+-i modulo p == 3 (mod 4) that are not divisible by 2 or 3.

Original entry on oeis.org

7475, 19895, 69445, 87725, 80735, 205975, 504095, 212605, 125081, 1274665, 720055, 181445, 1044005, 492929, 891335, 1346365, 5501795, 7360445, 8179505, 9489095, 10628035, 3850775, 3138905, 14618765, 15377605, 34181, 17907265, 21377825, 23942035, 5047511, 13694965, 6868865, 28713125
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

Primes p == 3 (mod 4) are precisely the rational primes in the ring of Gaussian integers.
Elements in A385165 that are not divisible by 2 or 3.
By definition, a(n) is the multiplicative order of 2+-i modulo A385188(n).

Crossrefs

Cf. A385165, A385188 (corresponding primes), A385217, A385218.

Programs

  • PARI
    ord(p) = my(d = divisors((p+1)*znorder(Mod(5, p)))); for(i=1, #d, if(Mod([2, -1; 1, 2], p)^d[i] == 1, return(d[i]))) \\ for a prime p == 3 (mod 4), returns ord(2+-i, p)
    forprime(p=3, 1e4, if(p%4==3 && ord(p)%2 && ord(p)%3, print1(ord(p), ", ")))

Formula

a(9) = 125081 since it is the multiplicative order of 5 modulo A385188(9) = 5479, and it is divisible by neither 2 nor 3.
Showing 1-3 of 3 results.