cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385221 Primes p such that multiplicative order of 4 modulo p is odd.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 73, 79, 83, 89, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 233, 239, 251, 263, 271, 281, 283, 307, 311, 331, 337, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

The multiplicative order of 4 modulo a(n) is A385227(n).
Primes p such that neither ord(2,p) nor ord(-2,p) is divisible by 4, where ord(a,m) is the multiplicative order of a modulo m. (Note that we have either (a) ord(2,p) = ord(-2,p) and both are even; (b) ord(-2,p) = 2*ord(2,p), ord(2,p) is odd, ord(-2,p) == 2 (mod 4); or (c) ord(2,p) = 2*ord(-2,p), ord(-2,p) is odd, ord(2,p) == 2 (mod 4)).
Contains all primes congruent to 3 modulo 4 (A002145).
Conjecture: this sequence has density 7/12 among the primes (see A014663).

Crossrefs

Contains A002145, A014663, and A163183.
Cf. A385227 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), this sequence (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[4, #]] &] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    isA385221(p) = isprime(p) && (p!=2) && znorder(Mod(4,p))%2