This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385224 #20 Jun 28 2025 12:53:59 %S A385224 5,13,29,37,41,53,61,101,109,113,137,149,157,173,181,197,229,269,277, %T A385224 293,313,317,349,373,389,397,409,421,457,461,509,521,541,557,569,593, %U A385224 613,653,661,677,701,709,733,757,761,773,797,809,821,829,853,857,877,941,953,997 %N A385224 Primes p such that multiplicative order of -4 modulo p is odd. %C A385224 The multiplicative order of -4 modulo a(n) is A385230(n). %C A385224 Different from A133204: 593 is here but not in A133204, and 1601 is in A133204 but not here. %C A385224 The sequence contains no primes congruent to 3 modulo 4 and all primes congruent to 5 modulo 8: %C A385224 - If p is a term of this sequence, then -4 is a quadratic residue modulo p, so p == 1 (mod 4); %C A385224 - For p == 1 (mod 4), we have (-4)^((p-1)/4) == (+-1+-i)^(p-1) == 1 (mod p), where i is a solution to i^2 == -1 (mod p). %C A385224 Conjecture: this sequence has density 1/3 among the primes. %H A385224 Jianing Song, <a href="/A385224/b385224.txt">Table of n, a(n) for n = 1..10000</a> %t A385224 Select[Prime[Range[200]], OddQ[MultiplicativeOrder[-4, #]] &] (* _Paolo Xausa_, Jun 28 2025 *) %o A385224 (PARI) isA385224(p) = isprime(p) && (p!=2) && znorder(Mod(-4,p))%2 %Y A385224 Subsequence of A002144 (primes congruent to 1 modulo 4). %Y A385224 Contains A007521 (primes congruent to 5 or modulo 8) as a proper subsequence. %Y A385224 Cf. A385230 (the actual multiplicative orders). %Y A385224 Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), this sequence (base -4), A385225 (base -5). %Y A385224 Cf. A133204. %K A385224 nonn,easy %O A385224 1,1 %A A385224 _Jianing Song_, Jun 22 2025