A385234 a(n) is the number of partitions of n into primes of the form 4*k + 1.
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 3, 2, 2, 3, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 5, 4, 5, 5, 5, 6, 5, 6, 5, 7, 7, 6, 8, 7, 9, 8, 8, 11, 8, 11, 10, 10, 13, 9, 14, 12, 13, 15, 12, 17
Offset: 0
Keywords
Examples
The a(53) = 3 partitions of 53 into primes of the form 4*k + 1 are [53], [5, 5, 13, 13, 17] and [5, 5, 5, 5, 5, 5, 5, 5, 13].
Links
- Felix Huber, Table of n, a(n) for n = 0..10000
Programs
-
Maple
with(gfun): A385234:=proc(N) # To get the first N terms. local f,i,g,h,n; f:=select(x->x mod 4=1,[seq(ithprime(i),i=1..NumberTheory:-pi(N))]); g:=mul(1/(1-q^f[n]),n=1..nops(f)): h:=series(g,q,N): return op(seriestolist(h)); end proc; A385234(84);
-
Mathematica
A385234[N_]:=Module[{f, g},f = Select[Prime[Range[PrimePi[N]]], Mod[#, 4] == 1 &]; g = Product[1/(1 - q^f[[n]]),{n, 1, Length[f]}];CoefficientList[Series[g, {q, 0, N}], q]];A385234[83] (* James C. McMahon, Jul 11 2025 *)
Comments