This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385235 #6 Jul 10 2025 23:51:11 %S A385235 1,0,0,1,0,0,1,1,0,1,1,1,1,1,2,1,1,2,2,2,2,3,3,3,3,4,4,3,5,5,5,6,6,7, %T A385235 7,7,8,9,9,9,11,11,12,13,14,15,15,17,17,19,20,20,23,24,25,26,29,30,30, %U A385235 34,35,37,39,41,44,46,49,51,55,57,59,64,66,70,73,77 %N A385235 a(n) is the number of partitions of n into primes of the form 4*k + 3. %C A385235 a(0) = 1 corresponds to the empty partition {}. %H A385235 Felix Huber, <a href="/A385235/b385235.txt">Table of n, a(n) for n = 0..10000</a> %F A385235 G.f.: 1 / Product_{k>=1} (1-x^A002145(k)). %F A385235 a(n) + A385234(n) <= A000607(n) for n >= 1. %F A385235 a(n) >= A024942(n). %e A385235 The a(14) = 2 partitions of 14 into primes of the form 4*k + 3 are [3, 11] and [7, 7]. %e A385235 The a(23) = 3 partitions of 23 into primes of the form 4*k + 3 are [23], [3, 3, 3, 3, 11] and [3, 3, 3, 7, 7]. %p A385235 with(gfun): %p A385235 A385235:=proc(N) # To get the first N terms. %p A385235 local f,i,g,h,n; %p A385235 f:=select(x->x mod 4=3,[seq(ithprime(i),i=1..NumberTheory:-pi(N))]); %p A385235 g:=mul(1/(1-q^f[n]),n=1..nops(f)): %p A385235 h:=series(g,q,N): %p A385235 return op(seriestolist(h)); %p A385235 end proc; %p A385235 A385235(76); %Y A385235 Cf. A000607, A002145, A024941, A024942, A385234. %K A385235 nonn %O A385235 0,15 %A A385235 _Felix Huber_, Jul 06 2025