cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A387171 Number of 4 element sets of distinct integer sided rectangles that fill an n X n square.

Original entry on oeis.org

0, 0, 0, 3, 15, 35, 75, 119, 210, 289, 441, 574, 804, 993, 1329, 1584, 2031, 2378, 2952, 3386, 4122, 4654, 5550, 6211, 7284, 8064, 9354, 10263, 11763, 12839, 14565, 15791, 17790, 19177, 21435, 23026, 25560, 27333, 30195, 32160, 35331, 37538, 41034, 43454, 47334
Offset: 1

Views

Author

Janaka Rodrigo, Aug 20 2025

Keywords

Examples

			The a(4) = 3 sets of integer sided rectangles are:
  {(1 X 1), (3 X 1), (4 X 2), (4 X 1)},
  {(2 X 1), (1 X 1), (3 X 3), (4 X 1)},
  {(4 X 1), (2 X 3), (2 X 2), (2 X 1)}.
		

Crossrefs

Column 4 of A385240.
Cf. A384311 (3-dimensional version).

Formula

Conjectures from Vaclav Kotesovec, Aug 22 2025: (Start)
G.f.: x^4*(3 + 18*x + 47*x^2 + 86*x^3 + 105*x^4 + 107*x^5 + 77*x^6 + 45*x^7 + 17*x^8 + 5*x^9) / ((1-x)^4 * (1+x)^3 * (1+x^2) * (1+x+x^2)^2).
a(n) = -a(n-1) + a(n-2) + 3*a(n-3) + 3*a(n-4) - a(n-5) - 4*a(n-6) - 4*a(n-7) - a(n-8) + 3*a(n-9) + 3*a(n-10) + a(n-11) - a(n-12) - a(n-13).
a(6*n+3) = a(6*n-3) - 3*a(6*n-1) + 3*a(6*n+1) + 30.
For n > 0, a(n) = -5 + 1421*n/144 - 35*n^2/6 + 139*n^3/144 - floor(n/4)/4 + (-1 + 2*n/3)*floor(n/3) + (-27/8 + 29*n/8 - 3*n^2/4)*floor(n/2) - floor((1 + n)/4)/4 + (-2/3 + n/3)*floor((1 + n)/3).
a(n) ~ 85*n^3/144.
(End)
Showing 1-1 of 1 results.