This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385285 #32 Jul 07 2025 11:56:36 %S A385285 1,2,4,8,16,16,32,32,16,32,24,48,40,64,40,64,16,32,40,64,48,48,88,96, %T A385285 40,80,88,112,72,112,112,128,16,32,40,64,64,96,120,160,48,96,72,144, %U A385285 104,176,160,192,40,80,104,176,120,176,176,224,72,144,160,224,176 %N A385285 a(n) = Sum_{k=0..n} (binomial(n, k) mod 8). %C A385285 a(n) is a multiple of A001316(n). - _Chai Wah Wu_, Jun 26 2025 %H A385285 John Tyler Rascoe, <a href="/A385285/b385285.txt">Table of n, a(n) for n = 0..8192</a> %H A385285 James G. Huard, Blair K. Spearman, and Kenneth S. Williams, <a href="https://doi.org/10.1006/eujc.1997.0146">Pascal's triangle (mod 8)</a>, European Journal of Combinatorics 19:1 (1998), pp. 45-62. %H A385285 Chai Wah Wu, <a href="https://accidentaldesultorycogitations.blogspot.com/2025/07/sum-of-rows-of-pascals-triangle-modulo-8.html">Sum of rows of Pascal's triangle modulo 8</a>, blog post. %p A385285 A385285 := n -> local k; add(modp(binomial(n, k), 8), k = 0..n): seq(A385285(n), n = 0..60); %t A385285 A385285[n_] := Sum[Mod[Binomial[n, k], 8], {k, 0, n}]; %t A385285 Array[A385285, 100, 0] (* _Paolo Xausa_, Jun 26 2025 *) %o A385285 (PARI) a(n) = sum(k=0, n, binomial(n, k) % 8); \\ _Michel Marcus_, Jun 26 2025 %o A385285 (Python) %o A385285 def A385285(n): %o A385285 if n==0: return 1 %o A385285 s = '0'+bin(n)[2:] %o A385285 n1 = n>>1 %o A385285 n2 = n1>>1 %o A385285 n3 = n2>>1 %o A385285 np = ~n %o A385285 n1111 = (n3&n2&n1&n).bit_count() %o A385285 n11 = (n1&n).bit_count() %o A385285 n101 = (n2&(~n1)&n).bit_count() %o A385285 n100 = (n2&(~n1)&np).bit_count() %o A385285 n110 = (n2&n1&np).bit_count() %o A385285 n10 = (n1&np).bit_count() %o A385285 n1100 = (n3&n2&(~n1)&np).bit_count() %o A385285 m11 = s.count('0110') %o A385285 m111 = s.endswith('0111') %o A385285 c = (n100<<2)+n110+(n10*(n10-1)>>1) %o A385285 if n11==0: %o A385285 c += n10+(n100<<1) %o A385285 elif n11==1: %o A385285 c += (n10-n1100<<1)+n110 %o A385285 else: %o A385285 c += n10<<1 %o A385285 if not (n1111 or n11 or n101): %o A385285 c += 1 %o A385285 elif not (n1111 or n11) and n101: %o A385285 c += 3 %o A385285 elif m111: %o A385285 c += 4 %o A385285 elif not (n1111 or n101 or m11) and n11: %o A385285 c += 2 %o A385285 else: %o A385285 c += 4 %o A385285 return c<<n.bit_count() # _Chai Wah Wu_, Jun 26 2025 %Y A385285 Cf. A034930 (row sums of), A001316 (mod 2), A384715 (mod 4). %K A385285 nonn,easy %O A385285 0,2 %A A385285 _Peter Luschny_, Jun 26 2025