cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385294 Numbers whose digits all belong to the same residue class mod 5.

This page as a plain text file.
%I A385294 #16 Jun 25 2025 17:19:25
%S A385294 0,1,2,3,4,5,6,7,8,9,11,16,22,27,33,38,44,49,50,55,61,66,72,77,83,88,
%T A385294 94,99,111,116,161,166,222,227,272,277,333,338,383,388,444,449,494,
%U A385294 499,500,505,550,555,611,616,661,666,722,727,772,777,833,838,883,888,944,949,994,999,1111,1116
%N A385294 Numbers whose digits all belong to the same residue class mod 5.
%H A385294 Alois P. Heinz, <a href="/A385294/b385294.txt">Table of n, a(n) for n = 1..18424</a> (first 1000 terms from Stefano Spezia)
%t A385294 Select[Range[0,1200],Length[DeleteDuplicates[Mod[IntegerDigits[#],5]]] == 1 &]
%Y A385294 Similar sequences for other values of the modulo k: A059708 (k=2), A385292 (k=3), A385293 (k=4), this sequence (k=5), A385295 (k=6), A385296 (k=7), A385297 (k=8), A385298 (k=9).
%K A385294 nonn,base,easy,look
%O A385294 1,3
%A A385294 _Stefano Spezia_, Jun 24 2025