cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385295 Numbers whose digits all belong to the same residue class mod 6.

This page as a plain text file.
%I A385295 #15 Jun 25 2025 17:23:26
%S A385295 0,1,2,3,4,5,6,7,8,9,11,17,22,28,33,39,44,55,60,66,71,77,82,88,93,99,
%T A385295 111,117,171,177,222,228,282,288,333,339,393,399,444,555,600,606,660,
%U A385295 666,711,717,771,777,822,828,882,888,933,939,993,999,1111,1117,1171,1177,1711,1717,1771,1777,2222
%N A385295 Numbers whose digits all belong to the same residue class mod 6.
%H A385295 Alois P. Heinz, <a href="/A385295/b385295.txt">Table of n, a(n) for n = 1..14352</a> (first 1000 termss from Stefano Spezia)
%t A385295 Select[Range[0,2300],Length[DeleteDuplicates[Mod[IntegerDigits[#],6]]] == 1 &]
%Y A385295 Similar sequences for other values of the modulo k: A059708 (k=2), A385292 (k=3), A385293 (k=4), A385294 (k=5), this sequence (k=6), A385296 (k=7), A385297 (k=8), A385298 (k=9).
%K A385295 nonn,base,look
%O A385295 1,3
%A A385295 _Stefano Spezia_, Jun 24 2025