This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385302 #35 Jun 27 2025 18:41:06 %S A385302 1,0,3,104,5355,15107664,2684295425,2261529015616800, %T A385302 97901171532649325295,671549787473885210310580160, %U A385302 113480471243172592617657936025689,67423693602852027222491606156048516615143200,52627558956534012662100374980910169826998422190695 %N A385302 Least common multiple of {n^n-1, n^(n-1)-1, ..., n-1}. %C A385302 For prime powers q (i.e. A000961), A351657(q) divides q*a(q). Follows from Niven's Fermat's theorem for matrices when considering Fibonacci q-step matrices over GF(q). %H A385302 Alois P. Heinz, <a href="/A385302/b385302.txt">Table of n, a(n) for n = 0..44</a> %H A385302 Ivan Niven, <a href="https://doi.org/10.1215/S0012-7094-48-01574-9">Fermat’s theorem for matrices</a>, Duke Math. J., Vol. 15, No. 3 (1948), pp. 823-826. %F A385302 a(n) = LCM{n^n-1, n^(n-1)-1, ..., n-1}. %F A385302 Conjecture: a(n) = Product_{k=1..n} Cyclotomic[k, n], i.e., a(n) = A156291(A000217(n)-1). %e A385302 a(1) = LCM{1-1} = 0, a(2) = LCM{2^2-1,2-1} = 3, a(3) = LCM{3^3-1,3^2-1,3-1} = 104. %p A385302 a:= n-> ilcm(n^j-1$j=1..n): %p A385302 seq(a(n), n=0..12); # _Alois P. Heinz_, Jun 25 2025 %t A385302 a[n_] := LCM @@ (n^Range[n] - 1); a[0] = 1; Array[a, 14, 0] (* _Amiram Eldar_, Jun 25 2025 *) %o A385302 (PARI) a(n) = lcm(vector(n, k, n^k-1)); \\ _Michel Marcus_, Jun 25 2025 %Y A385302 Cf. A000217, A000961, A003418, A048861, A156291, A351657. %K A385302 nonn %O A385302 0,3 %A A385302 _Avery Diep_, Jun 24 2025