A385332 Integers k such that the set {k, k^2, ..., k^9} contains at least 8 zeroless numbers.
1, 2, 3, 5, 6, 11, 17, 68, 121, 786
Offset: 1
Examples
5 is a term, since the first nine powers of 5 are: 5, 25, 125, 625, 3125, 15625, 78125, 390625 and 1953125, where 8 of the 9 are zeroless.
Programs
-
Maple
zless:= n -> not has(convert(n,base,10),0): filter:= proc(n) local i; nops(select(zless, [seq(n^i,i=1..9)]))>=8 end proc: select(filter, [$1..1000]); # Robert Israel, Jun 26 2025
-
Mathematica
Select[Range[10^5],Total[Boole/@Positive/@Min/@IntegerDigits/@(#^Range[9])]>7&] (* James C. McMahon, Jul 01 2025 *)
Comments