This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385344 #33 Jun 28 2025 11:15:17 %S A385344 1,2,4,8,11,16,22,32,44,64,88,101,121,128,176,202,211,242,256,352,404, %T A385344 422,484,512,704,808,844,968,1021,1024,1111,1201,1331,1408,1616,1688, %U A385344 1936,2011,2042,2048,2111,2221,2222,2321,2402,2662,2816,3232,3376,3872,4022,4084,4096,4222,4442,4444,4642,4804,5324,5632 %N A385344 Numbers where all the digits of all the prime factors are smaller than 3. %C A385344 Multiplicative closure of A036953. %H A385344 Michael S. Branicky, <a href="/A385344/b385344.txt">Table of n, a(n) for n = 1..10000</a> %F A385344 {k | all prime factors of k are in A036953}. - _Michael S. Branicky_, Jun 26 2025 %e A385344 202 is in the sequence since the prime factors 2 and 101 both have all digits smaller than 3. %e A385344 34 is not in the sequence since it has the prime factor 17 that have a digit larger than 2. %t A385344 A385344Q[k_] := AllTrue[FactorInteger[k][[All, 1]], Max[IntegerDigits[#]] < 3 &]; %t A385344 Select[Range[10000], A385344Q] (* _Paolo Xausa_, Jun 28 2025 *) %o A385344 (Python) %o A385344 from sympy import primefactors %o A385344 def ok(n): return all(set(str(f)) <= set("012") for f in primefactors(n)) %o A385344 print([k for k in range(1, 6000) if ok(k)]) # _Michael S. Branicky_, Jun 26 2025 %Y A385344 Supersequence of A036953. Cf. A385345. %K A385344 nonn,base,easy %O A385344 1,2 %A A385344 _Jens Ahlström_, Jun 26 2025