cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385345 Numbers without a prime factor with a digit larger than 1.

This page as a plain text file.
%I A385345 #23 Jun 29 2025 09:06:53
%S A385345 1,11,101,121,1111,1331,10111,10201,12221,14641,101111,111221,112211,
%T A385345 134431,161051,1011001,1021211,1030301,1100101,1112221,1223431,
%U A385345 1234321,1478741,1771561,10010101,10011101,10100011,10101101,10110011,10111001,10212211,11000111,11100101,11110111,11111101
%N A385345 Numbers without a prime factor with a digit larger than 1.
%C A385345 Numbers where all the digits of the prime factors are either 1 or 0. Multiplicative closure of A020449.
%H A385345 Michael S. Branicky, <a href="/A385345/b385345.txt">Table of n, a(n) for n = 1..10000</a>
%F A385345 {k | all prime factors of k are in A020449}. - _Michael S. Branicky_, Jun 26 2025
%e A385345 121 = 11 * 11 is in the sequence, since its only prime factor 11 does not have any digits larger than 1.
%e A385345 1001 = 7 * 13 * 11 is not in the sequence since 7 and 13 has digits larger than 1.
%t A385345 Select[Range[2*10^6],AllTrue[IntegerDigits/@First/@FactorInteger[#]//Flatten,#<2&]&] (* _James C. McMahon_, Jun 28 2025 *)
%o A385345 (Python)
%o A385345 from sympy import primefactors
%o A385345 def ok(n): return all(set(str(p)) <= set("01") for p in primefactors(n))
%o A385345 print([k for k in range(1, 2*10**6) if ok(k)]) # _Michael S. Branicky_, Jun 26 2025
%Y A385345 Supersequence of A020449.
%Y A385345 Cf. A385344.
%K A385345 nonn,base
%O A385345 1,2
%A A385345 _Jens Ahlström_, Jun 26 2025