This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385345 #23 Jun 29 2025 09:06:53 %S A385345 1,11,101,121,1111,1331,10111,10201,12221,14641,101111,111221,112211, %T A385345 134431,161051,1011001,1021211,1030301,1100101,1112221,1223431, %U A385345 1234321,1478741,1771561,10010101,10011101,10100011,10101101,10110011,10111001,10212211,11000111,11100101,11110111,11111101 %N A385345 Numbers without a prime factor with a digit larger than 1. %C A385345 Numbers where all the digits of the prime factors are either 1 or 0. Multiplicative closure of A020449. %H A385345 Michael S. Branicky, <a href="/A385345/b385345.txt">Table of n, a(n) for n = 1..10000</a> %F A385345 {k | all prime factors of k are in A020449}. - _Michael S. Branicky_, Jun 26 2025 %e A385345 121 = 11 * 11 is in the sequence, since its only prime factor 11 does not have any digits larger than 1. %e A385345 1001 = 7 * 13 * 11 is not in the sequence since 7 and 13 has digits larger than 1. %t A385345 Select[Range[2*10^6],AllTrue[IntegerDigits/@First/@FactorInteger[#]//Flatten,#<2&]&] (* _James C. McMahon_, Jun 28 2025 *) %o A385345 (Python) %o A385345 from sympy import primefactors %o A385345 def ok(n): return all(set(str(p)) <= set("01") for p in primefactors(n)) %o A385345 print([k for k in range(1, 2*10**6) if ok(k)]) # _Michael S. Branicky_, Jun 26 2025 %Y A385345 Supersequence of A020449. %Y A385345 Cf. A385344. %K A385345 nonn,base %O A385345 1,2 %A A385345 _Jens Ahlström_, Jun 26 2025