This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385356 #25 Jul 26 2025 20:24:35 %S A385356 2,40,164,196,224,1120,3040,13440,22932,44200,76160,90848,91720, %T A385356 174592,530200,619840,687184,872960,1686400,1767040,1807120,1927680, %U A385356 1990912,2154880,3653760,4286880,5637632,5759680,6442128,8225280,8943800,9264320,9465600,9694080 %N A385356 Numbers x such that there exist two integers 0<x<=y and z>0 such that sigma(x)^2 = sigma(y)^2 = x^2 + y^2 + z^2. %C A385356 The numbers x, y and z form a sigma-quadratic triple. See Dimitrov link. %H A385356 Chai Wah Wu, <a href="/A385356/b385356.txt">Table of n, a(n) for n = 1..161</a> %H A385356 S. I. Dimitrov, <a href="https://arxiv.org/abs/2408.07387">Generalizations of amicable numbers</a>, arXiv:2408.07387 [math.NT], 2024. %e A385356 (40, 58, 56) is such a triple because sigma(40)^2 = sigma(58)^2 = 90^2 = 40^2 + 58^2 + 56^2. %o A385356 (Python) %o A385356 from itertools import count, islice %o A385356 from sympy import divisor_sigma %o A385356 from sympy.ntheory.primetest import is_square %o A385356 def A385356_gen(startvalue=1): # generator of terms >= startvalue %o A385356 for x in count(max(startvalue,1)): %o A385356 sx, x2 = int(divisor_sigma(x)), x**2 %o A385356 sx2 = sx**2 %o A385356 if sx2>x2: %o A385356 for y in count(x): %o A385356 if (k:=sx2-x2-y**2)<=0: %o A385356 break %o A385356 if is_square(k) and sx==divisor_sigma(y): %o A385356 yield x %o A385356 break %o A385356 A385356_list = list(islice(A385356_gen(),8)) # _Chai Wah Wu_, Jul 02 2025 %Y A385356 Cf. A000203, A066784, A096907, A096908, A096909, A096910, A385325. %K A385356 nonn %O A385356 1,1 %A A385356 _S. I. Dimitrov_, Jun 26 2025 %E A385356 Data corrected by _David A. Corneth_, Jun 27 2025 %E A385356 a(18)-a(34) from _Chai Wah Wu_, Jul 02 2025