A385366 a(n) = Sum_{permutations p of [n]} des(p^2), where des(p) is the number of descents of p.
0, 0, 2, 24, 192, 1560, 13680, 131040, 1370880, 15603840, 192326400, 2554675200, 36404121600, 554204851200, 8979363993600, 154305575424000, 2803653844992000, 53708801642496000, 1082001156268032000, 22869278876860416000, 506043617700741120000, 11699825757321461760000
Offset: 1
Examples
For the permutation p = (2, 3, 4, 1), p^2 = (3, 4, 1, 2), and des(p) = des(p^2) = 1 (because 4 > 1).
Links
- Paolo Xausa, Table of n, a(n) for n = 1..445
Crossrefs
Cf. A001286.
Programs
-
Mathematica
A385366[n_] := If[n <= 2, 0, (n - 1)!*(n^2 - n - 4)/2]; Array[A385366, 25] (* Paolo Xausa, Jul 14 2025 *)
-
PARI
a(n)=if(n>2,(n-1)!*(n^2-n-4)/2, 0);
Formula
a(n) = 0 if n <= 2; a(n) = (n-1)!*(n^2-n-4)/2 if n >= 3.