cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385372 Expansion of e.g.f. 1/(1 - 3 * arcsinh(x))^(1/3).

This page as a plain text file.
%I A385372 #13 Jun 27 2025 04:30:36
%S A385372 1,1,4,27,264,3369,52896,986187,21293184,522491697,14359993344,
%T A385372 436964488443,14583637923840,529683272760537,20798444046458880,
%U A385372 877927319167721067,39644175780617748480,1906959640776766940385,97344936393086594580480,5255894631271228490720475
%N A385372 Expansion of e.g.f. 1/(1 - 3 * arcsinh(x))^(1/3).
%F A385372 E.g.f.: 1/(1 - 3 * log(x + sqrt(x^2 + 1)))^(1/3).
%F A385372 a(n) = Sum_{k=0..n} A007559(k) * i^(n-k) * A385343(n,k), where i is the imaginary unit.
%F A385372 a(n) ~ sqrt(Pi) * (exp(2/3) + 1)^(1/3) * 2^(n + 1/2) * n^(n - 1/6) / (3^(1/3) * Gamma(1/3) * exp(2*n/3) * (exp(2/3) - 1)^(n + 1/3)). - _Vaclav Kotesovec_, Jun 27 2025
%o A385372 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*asinh(x))^(1/3)))
%Y A385372 Cf. A296675, A385371.
%Y A385372 Cf. A007559, A385311, A385343.
%K A385372 nonn
%O A385372 0,3
%A A385372 _Seiichi Manyama_, Jun 27 2025