A385374 a(n) is the number of partitions of n into tau(n) distinct parts.
1, 0, 1, 0, 2, 0, 3, 0, 3, 1, 5, 0, 6, 5, 6, 1, 8, 0, 9, 0, 27, 34, 11, 0, 40, 64, 72, 14, 14, 0, 15, 44, 150, 169, 185, 0, 18, 249, 270, 5, 20, 11, 21, 454, 532, 478, 23, 0, 176, 1057, 672, 1360, 26, 288, 864, 434, 972, 1033, 29, 0, 30, 1285, 4494, 4011, 1495
Offset: 1
Examples
a(14) = 5 because there are 5 partitions of 14 into tau(14) = 4 distinct parts: [1, 2, 3, 8], [1, 2, 4, 7], [1, 2, 5, 6], [1, 3, 4, 6], [2, 3, 4, 5].
Links
- Felix Huber, Table of n, a(n) for n = 1..4000
Programs
-
Maple
b:= proc(n,i,k) option remember; if n=0 and k=0 then return 1 elif n=0 or k=0 or i<1 then return 0 elif i<=n then return b(n,i-1,k)+b(n-i,i-1,k-1) else return b(n,i-1,k) fi; end proc: A385374:=n->b(n,n,NumberTheory:-tau(n)); seq(A385374(n),n=1..65);
-
Mathematica
a[n_]:=Length[Select[Union/@IntegerPartitions[n,{DivisorSigma[0,n]}],Length[#]==DivisorSigma[0,n]&]];Array[a,65] (* James C. McMahon, Jul 11 2025 *)