This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385378 #10 Jun 29 2025 10:09:52 %S A385378 0,1,1,1,1,2,1,2,1,2,1,2,1,2,2,2,1,2,1,2,2,2,1,3,1,2,2,2,1,3,1,2,2,2, %T A385378 2,2,1,2,2,3,1,3,1,2,2,2,1,3,1,2,2,2,1,3,2,3,2,2,1,3,1,2,2,3,2,3,1,2, %U A385378 2,3,1,3,1,2,2,2,2,3,1,3,2,2,1,3,2,2,2 %N A385378 The maximum possible number of distinct factors in the factorization of n into prime powers (A246655). %C A385378 Differs from A376885 and A384422 at n = 32, 64, 96, 128, 160, 192, ... . %C A385378 Differs from A086435 at n = 36, 100, 144, 180, 196, 225, ... . %C A385378 Differs from A375272 at n = 128, 384, 640, 896, 1024, 1152, ... . %C A385378 a(n) depends only on the prime signature of n (A118914). %C A385378 The indices of records in this sequence are the partial products of the sequence of powers of primes (A000961), i.e., the terms in A024923. %C A385378 The least index n such that a(n) = k, for k = 0, 1, 2, ..., is A024923(k+1). %H A385378 Amiram Eldar, <a href="/A385378/b385378.txt">Table of n, a(n) for n = 1..10000</a> %F A385378 Additive with a(p^e) = A003056(e). %F A385378 a(n) >= A001221(n), with equality if and only if n is cubefree (A004709). %F A385378 a(n) >= 1 for n >= 2, with equality if and only if n is a prime or a square of a prime (A000430). %F A385378 Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{k>=2} P(k*(k+1)/2) = 0.19285739770001405035..., and P is the prime zeta function. %e A385378 n | a(n) | factorization %e A385378 ------+------+-------------------------------- %e A385378 2 | 1 | 2 %e A385378 6 | 2 | 2 * 3 %e A385378 24 | 3 | 2 * 3 * 2^2 %e A385378 120 | 4 | 2 * 3 * 2^2 * 5 %e A385378 840 | 5 | 2 * 3 * 2^2 * 5 * 7 %e A385378 6720 | 6 | 2 * 3 * 2^2 * 5 * 7 * 2^3 %e A385378 60480 | 7 | 2 * 3 * 2^2 * 5 * 7 * 2^3 * 3^2 %t A385378 f[p_, e_] := Floor[(Sqrt[8*e + 1] - 1)/2]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] %o A385378 (PARI) a(n) = vecsum(apply(x -> (sqrtint(8*x+1)-1)\2 , factor(n)[, 2])); %Y A385378 Cf. A000430, A000961, A001221, A003056, A004709, A024923, A077761, A086435, A118914, A246655, A254578, A375272, A376885, A384422, A385379. %K A385378 nonn,easy %O A385378 1,6 %A A385378 _Amiram Eldar_, Jun 27 2025