cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385379 The maximum possible number of distinct composite prime powers (A246547) in the factorization of n into prime powers.

This page as a plain text file.
%I A385379 #7 Jun 29 2025 10:09:48
%S A385379 0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,0,1,1,0,0,0,2,0,0,
%T A385379 0,2,0,0,0,1,0,0,0,1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,2,0,0,0,1,
%U A385379 0,0,0,2,0,0,1,1,0,0,0,1,1,0,0,1,0,0,0
%N A385379 The maximum possible number of distinct composite prime powers (A246547) in the factorization of n into prime powers.
%C A385379 Differs from A376679 at n = 1, 48, 72, 80, ... .
%C A385379 The factorization includes primes if n is not a powerful number (A001694) that is larger than 1.
%C A385379 a(n) depends only on the prime signature of n (A118914).
%H A385379 Amiram Eldar, <a href="/A385379/b385379.txt">Table of n, a(n) for n = 1..10000</a>
%F A385379 Additive with a(p^e) = A052146(e+1).
%F A385379 a(n) = 0 if and only if n is squarefree (A005117).
%F A385379 a(A385380(n)) = n-1.
%F A385379 Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{k>=1} P(k*(k+3)/2) = 0.49006911093767425812..., and P is the prime zeta function.
%e A385379          n | a(n) | factorization
%e A385379   ---------+------+----------------------------------------
%e A385379          4 |  1   | 2^2
%e A385379         32 |  2   | 2^2 * 2^3
%e A385379        288 |  3   | 2^2 * 2^3 * 3^2
%e A385379       4608 |  4   | 2^2 * 2^3 * 3^2 * 2^4
%e A385379     115200 |  5   | 2^2 * 2^3 * 3^2 * 2^4 * 5^2
%e A385379    3110400 |  6   | 2^2 * 2^3 * 3^2 * 2^4 * 5^2 * 3^3
%e A385379   99532800 |  7   | 2^2 * 2^3 * 3^2 * 2^4 * 5^2 * 3^3 * 2^5
%t A385379 f[p_, e_] := Floor[(Sqrt[8*e + 9] - 3)/2]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A385379 (PARI) a(n) = vecsum(apply(x -> (sqrtint(8*x+9)-1)\2 , factor(n)[, 2]));
%Y A385379 Cf. A001694, A005117, A052146, A077761, A118914, A246547, A246655, A376679, A385378, A385380 (indices of records).
%K A385379 nonn,easy
%O A385379 1,32
%A A385379 _Amiram Eldar_, Jun 27 2025