This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385379 #7 Jun 29 2025 10:09:48 %S A385379 0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,0,1,1,0,0,0,2,0,0, %T A385379 0,2,0,0,0,1,0,0,0,1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,2,0,0,0,1, %U A385379 0,0,0,2,0,0,1,1,0,0,0,1,1,0,0,1,0,0,0 %N A385379 The maximum possible number of distinct composite prime powers (A246547) in the factorization of n into prime powers. %C A385379 Differs from A376679 at n = 1, 48, 72, 80, ... . %C A385379 The factorization includes primes if n is not a powerful number (A001694) that is larger than 1. %C A385379 a(n) depends only on the prime signature of n (A118914). %H A385379 Amiram Eldar, <a href="/A385379/b385379.txt">Table of n, a(n) for n = 1..10000</a> %F A385379 Additive with a(p^e) = A052146(e+1). %F A385379 a(n) = 0 if and only if n is squarefree (A005117). %F A385379 a(A385380(n)) = n-1. %F A385379 Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{k>=1} P(k*(k+3)/2) = 0.49006911093767425812..., and P is the prime zeta function. %e A385379 n | a(n) | factorization %e A385379 ---------+------+---------------------------------------- %e A385379 4 | 1 | 2^2 %e A385379 32 | 2 | 2^2 * 2^3 %e A385379 288 | 3 | 2^2 * 2^3 * 3^2 %e A385379 4608 | 4 | 2^2 * 2^3 * 3^2 * 2^4 %e A385379 115200 | 5 | 2^2 * 2^3 * 3^2 * 2^4 * 5^2 %e A385379 3110400 | 6 | 2^2 * 2^3 * 3^2 * 2^4 * 5^2 * 3^3 %e A385379 99532800 | 7 | 2^2 * 2^3 * 3^2 * 2^4 * 5^2 * 3^3 * 2^5 %t A385379 f[p_, e_] := Floor[(Sqrt[8*e + 9] - 3)/2]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] %o A385379 (PARI) a(n) = vecsum(apply(x -> (sqrtint(8*x+9)-1)\2 , factor(n)[, 2])); %Y A385379 Cf. A001694, A005117, A052146, A077761, A118914, A246547, A246655, A376679, A385378, A385380 (indices of records). %K A385379 nonn,easy %O A385379 1,32 %A A385379 _Amiram Eldar_, Jun 27 2025