This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385396 #21 Jun 30 2025 09:57:24 %S A385396 0,1,2,3,4,5,6,7,9,11,13,15,19,23,27,31,39,47,55,63,79,95,111,127,159, %T A385396 191,223,255,319,383,447,511,639,767,895,1023,1279,1535,1791,2047, %U A385396 2559,3071,3583,4095,5119,6143,7167,8191,10239,12287,14335,16383,20479,24575 %N A385396 Numbers k such that 8 does not divide binomial(k, j) for any j in 0..k. %H A385396 Paolo Xausa, <a href="/A385396/b385396.txt">Table of n, a(n) for n = 1..10000</a> %H A385396 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,2,-2). %F A385396 a(n) = [x^n] (x + x^2 + x^3 + x^4 - x^5 - x^6 - x^7)/((-1 + x)*(-1 + 2*x^4)). %F A385396 a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) for n > 8. - _Chai Wah Wu_, Jun 28 2025 %p A385396 isa := n -> andmap(j -> modp(binomial(n, j), 8) > 0, [seq(0..n)]): select(isa, [seq(0..200)]); %p A385396 # Or, using the o.g.f.: %p A385396 gf := (x + x^2 + x^3 + x^4 - x^5 - x^6 - x^7)/((-1 + x)*(-1 + 2*x^4)): ser := series(gf, x, 60): seq(coeff(ser, x, n), n = 0..53); %t A385396 LinearRecurrence[{1, 0, 0, 2, -2}, Range[0, 7], 60] (* _Paolo Xausa_, Jun 30 2025 *) %o A385396 (Python) %o A385396 def seq_gen(): %o A385396 n, c, value = 0, 1, 3 %o A385396 for v in [0, 1, 2]: yield v %o A385396 while True: %o A385396 yield value %o A385396 value += c %o A385396 n += 1 %o A385396 if n == 4: %o A385396 n = 0 %o A385396 c += c %o A385396 term = seq_gen() %o A385396 print([next(term) for _ in range(54)]) %Y A385396 Cf. A000225 (case m=2), A052955 (case m=4). %K A385396 nonn %O A385396 1,3 %A A385396 _Peter Luschny_, Jun 28 2025