This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385404 #20 Jun 27 2025 16:26:33 %S A385404 12,13,15,17,42,43,45,47,62,63,65,67,82,83,85,87,92,93,95,97,123,143, %T A385404 147,153,167,183,423,443,447,453,467,483,497,623,637,643,647,653,667, %U A385404 683,697,813,817,823,843,847,853,867,873,883,913,917,923,937,943,947,953,967,983,997 %N A385404 Numbers that can be split into two at any place between their digits such that the resulting numbers are always a nonprime on the left and a prime on the right. %C A385404 As no leading zeros are allowed, all terms are zeroless. %C A385404 From _Michael S. Branicky_, Jun 27 2025: (Start) %C A385404 Finite since each term with first digit removed must be a member of A024785, which is finite. %C A385404 Last term here is a(7407) = 6357686312646216567629137. (End) %H A385404 Michael S. Branicky, <a href="/A385404/b385404.txt">Table of n, a(n) for n = 1..7407</a> %e A385404 637 is a term because when it is split in two in all possible ways, it first results in 63, a nonprime, and 3, a prime. When split in the second and final possible way, it results in 6, a nonprime, and 37, a prime. %t A385404 q[n_] := !MemberQ[IntegerDigits[n], 0] && AllTrue[Range[IntegerLength[n]-1], PrimeQ[QuotientRemainder[n, 10^#]] == {False, True} &]; Select[Range[10, 1000], q] (* _Amiram Eldar_, Jun 27 2025 *) %o A385404 (Python) %o A385404 from sympy import isprime %o A385404 def ok(n): return '0' not in (s:=str(n)) and len(s) > 1 and all(not isprime(int(s[:i])) and isprime(int(s[i:])) for i in range(1, len(s))) %o A385404 print([k for k in range(1000) if ok(k)]) # _Michael S. Branicky_, Jun 27 2025 %o A385404 (Python) # uses import and function ok above %o A385404 from itertools import count, islice, product %o A385404 def agen(): # generator of terms %o A385404 tp = list("23579") # set of left-truncatable primes %o A385404 for d in count(2): %o A385404 tpnew = [] %o A385404 for f in "123456789": %o A385404 for e in tp: %o A385404 if isprime(int(s:=f+e)): %o A385404 tpnew.append(s) %o A385404 if ok(t:=int(f+e)): %o A385404 yield t %o A385404 tp = tpnew %o A385404 if len(tp) == 0: %o A385404 return %o A385404 afull = list(agen()) %o A385404 print(afull[:60]) # _Michael S. Branicky_, Jun 27 2025 %Y A385404 Cf. A125664, A125524, A024785. %K A385404 nonn,base,fini,full %O A385404 1,1 %A A385404 _Tamas Sandor Nagy_, Jun 27 2025