cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385415 Products of three consecutive integers whose prime divisors are consecutive primes starting at 2.

This page as a plain text file.
%I A385415 #24 Jul 14 2025 21:45:29
%S A385415 6,24,60,120,210,720,3360,9240,117600,166320,970200,43243200,85765680
%N A385415 Products of three consecutive integers whose prime divisors are consecutive primes starting at 2.
%C A385415 The final term is 440*441*442 = 85765680.
%C A385415 Let tau(a(n)) be the number of divisors of a(n), sigma(a(n)) be the sum of divisors of a(n), S be the strictly increasing sequence of divisors of a(n), and S(i) be the i-th element of S. Since sigma(a(n)) is even and for every i in the interval [1, tau(a(n))-1], 2*S(i) >= S(i+1), a(n) is a Zumkeller number (see Proposition 17 in Rao/Peng JNT paper at A083207). - _Ivan N. Ianakiev_, Jul 09 2025
%e A385415 a(1) = 6 = 1*2*3 = 2^1 * 3^1.
%e A385415 a(2) = 24 = 2*3*4 = 2^3 * 3^1.
%e A385415 a(3) = 60 = 3*4*5 = 2^2 * 3^1 * 5^1.
%e A385415 a(4) = 120 = 4*5*6 = 2^3 * 3^1 * 5^1.
%e A385415 a(5) = 210 = 5*6*7 = 2^1 * 3^1 * 5^1 * 7^1.
%e A385415 a(6) = 720 = 8*9*10 = 2^4 * 3^2 * 5^1.
%e A385415 ...
%e A385415 a(13) = 85765680 = 440*441*442 = 2^4 * 3^2 * 5^1 * 7^2 * 11^1 * 13^1 * 17^1.
%t A385415 Select[(#*(# + 1)*(# + 2)) & /@ Range[500], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* _Amiram Eldar_, Jun 28 2025 *)
%o A385415 (Python)
%o A385415 from sympy import prime, primefactors
%o A385415 def is_pi_complete(n): # Check for complete set of
%o A385415     factors = primefactors(n) # prime factors
%o A385415     return factors[-1] == prime(len(factors))
%o A385415 def aupto(limit):
%o A385415     result = []
%o A385415     for i in range(1, limit+1):
%o A385415         n = i * (i+1) * (i+2)
%o A385415         if is_pi_complete(n):
%o A385415             result.append(n)
%o A385415     return result
%o A385415 print(aupto(100_000))
%Y A385415 Intersection of A007531 and A055932.
%Y A385415 Cf. A385189, A083207 (supersequence).
%K A385415 nonn,fini,full
%O A385415 1,1
%A A385415 _Ken Clements_, Jun 28 2025