This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385415 #24 Jul 14 2025 21:45:29 %S A385415 6,24,60,120,210,720,3360,9240,117600,166320,970200,43243200,85765680 %N A385415 Products of three consecutive integers whose prime divisors are consecutive primes starting at 2. %C A385415 The final term is 440*441*442 = 85765680. %C A385415 Let tau(a(n)) be the number of divisors of a(n), sigma(a(n)) be the sum of divisors of a(n), S be the strictly increasing sequence of divisors of a(n), and S(i) be the i-th element of S. Since sigma(a(n)) is even and for every i in the interval [1, tau(a(n))-1], 2*S(i) >= S(i+1), a(n) is a Zumkeller number (see Proposition 17 in Rao/Peng JNT paper at A083207). - _Ivan N. Ianakiev_, Jul 09 2025 %e A385415 a(1) = 6 = 1*2*3 = 2^1 * 3^1. %e A385415 a(2) = 24 = 2*3*4 = 2^3 * 3^1. %e A385415 a(3) = 60 = 3*4*5 = 2^2 * 3^1 * 5^1. %e A385415 a(4) = 120 = 4*5*6 = 2^3 * 3^1 * 5^1. %e A385415 a(5) = 210 = 5*6*7 = 2^1 * 3^1 * 5^1 * 7^1. %e A385415 a(6) = 720 = 8*9*10 = 2^4 * 3^2 * 5^1. %e A385415 ... %e A385415 a(13) = 85765680 = 440*441*442 = 2^4 * 3^2 * 5^1 * 7^2 * 11^1 * 13^1 * 17^1. %t A385415 Select[(#*(# + 1)*(# + 2)) & /@ Range[500], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* _Amiram Eldar_, Jun 28 2025 *) %o A385415 (Python) %o A385415 from sympy import prime, primefactors %o A385415 def is_pi_complete(n): # Check for complete set of %o A385415 factors = primefactors(n) # prime factors %o A385415 return factors[-1] == prime(len(factors)) %o A385415 def aupto(limit): %o A385415 result = [] %o A385415 for i in range(1, limit+1): %o A385415 n = i * (i+1) * (i+2) %o A385415 if is_pi_complete(n): %o A385415 result.append(n) %o A385415 return result %o A385415 print(aupto(100_000)) %Y A385415 Intersection of A007531 and A055932. %Y A385415 Cf. A385189, A083207 (supersequence). %K A385415 nonn,fini,full %O A385415 1,1 %A A385415 _Ken Clements_, Jun 28 2025