cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A385417 Numbers with a record number of unordered factorizations into exponentially odd numbers (A268335).

Original entry on oeis.org

1, 6, 24, 30, 60, 96, 120, 210, 240, 420, 480, 720, 840, 1680, 2520, 3360, 5040, 6720, 9240, 10080, 13440, 15120, 18480, 27720, 30240, 36960, 55440, 73920, 110880, 147840, 166320, 221760, 332640, 443520, 665280, 720720, 887040, 960960, 1108800, 1330560, 1441440
Offset: 1

Views

Author

Amiram Eldar, Jun 28 2025

Keywords

Comments

Indices of records of A385416.
The corresponding record values are 1, 2, 4, 5, 6, 7, 11, 15, 16, 21, 22, 25, 37, 59, 62, 83, ... (see the link for more values).

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 1 || k == 1, {{}}, Flatten[Table[Map[Prepend[#, d] &, T[d, k/d]], {d, Select[Divisors[k], 1 < # <= n &]}], 1]]; f[n_] := T[n, n];
    expOdd[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; s[n_] := Count[f[n], _?(And @@ (expOdd /@ #) &)];
    With[{lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, sm = -1; seq = {}; Do[s1 = s[lps[[i]]]; If[s1 > sm, sm = s1; AppendTo[seq, lps[[i]]]], {i, 1, 300}]; seq]

Formula

The factorizations of the first 5 terms:
n | a(n) | A385416(a(n)) | factorizations
--+-------+---------------|------------------------------------------------------------------
1 | 1 | 1 | 1
2 | 6 | 2 | 2*3, 6
3 | 24 | 4 | 2 * 2 * 2 * 3, 2 * 2 * 6, 3 * 8, 24
4 | 30 | 5 | 2 * 3 * 5, 2 * 15, 3 * 10, 5 * 6, 30
5 | 60 | 6 | 2 * 2 * 3 * 5, 2 * 2 * 15, 2 * 3 * 10, 2 * 5 * 6, 2 * 30, 6 * 10
Showing 1-1 of 1 results.