A385418 The number of unordered factorizations of n into powers of primes of the form p^(2^k-1) where p is prime and k >= 0.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
n | a(n) | factorizations --+------+------------------------------------------------------------------- 2 | 8 | 2 * 2 * 2, 2^3 3 | 64 | 2 * 2 * 2 * 2 * 2 * 2, 2 * 2 * 2 * 2^3, 2^3 * 2^3 4 | 128 | 2 * 2 * 2 * 2 * 2 * 2 * 2, 2 * 2 * 2 * 2 * 2^3, 2 * 2^3 * 2^3, 2^7
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
T[n_, k_] := T[n, k] = If[k <= n, T[n - k, k] + T[n, 2*k + 1], Boole[n == 0]]; f[p_, e_] := T[e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
t(n, k) = if(k <= n, t(n-k, k) + t(n, 2*k+1), n == 0); a(n) = vecprod(apply(x -> t(x, 1), factor(n)[,2]));
Formula
Multiplicative with a(p^e) = A000929(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{k>=2} zeta(2^k-1) = 1.21213028603089660618... .
Comments