cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385418 The number of unordered factorizations of n into powers of primes of the form p^(2^k-1) where p is prime and k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 28 2025

Keywords

Comments

First differs from A304327 and A368248 at n = 64.
First differs from A061704 and A362852 at n = 128.
The number of unordered factorizations of n into powers of primes in A036537.

Examples

			  n | a(n) | factorizations
  --+------+-------------------------------------------------------------------
  2 |    8 | 2 * 2 * 2, 2^3
  3 |   64 | 2 * 2 * 2 * 2 * 2 * 2, 2 * 2 * 2 * 2^3, 2^3 * 2^3
  4 |  128 | 2 * 2 * 2 * 2 * 2 * 2 * 2, 2 * 2 * 2 * 2 * 2^3, 2 * 2^3 * 2^3, 2^7
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k <= n, T[n - k, k] + T[n, 2*k + 1], Boole[n == 0]]; f[p_, e_] := T[e, 1];
    a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    t(n, k) = if(k <= n, t(n-k, k) + t(n, 2*k+1), n == 0);
    a(n) = vecprod(apply(x -> t(x, 1), factor(n)[,2]));

Formula

Multiplicative with a(p^e) = A000929(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{k>=2} zeta(2^k-1) = 1.21213028603089660618... .