cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385431 Leading digit of the decimal expansion of the prime zeta function at n.

This page as a plain text file.
%I A385431 #25 Aug 04 2025 18:39:26
%S A385431 4,1,7,3,1,8,4,2,9,4,2,1,6,3,1,7,3,1,9,4,2,1,5,2,1,7,3,1,9,4,2,1,5,2,
%T A385431 1,7,3,1,9,4,2,1,5,2,1,7,3,1,8,4,2,1,5,2,1,6,3,1,8,4,2,1,5,2,1,6,3,1,
%U A385431 8,4,2,1,5,2,1,6,3,1,8,4,2,1,5,2,1,6,3
%N A385431 Leading digit of the decimal expansion of the prime zeta function at n.
%C A385431 For each n = 2, 3, 4, ..., a(n) is the most significant (nonzero) digit of the decimal expansion of P(n) := Sum_{p prime} 1/p^n, the prime zeta function at argument n.
%C A385431 The present sequence starts at n = 2, since the underlying series diverges for any integer less than 2.
%C A385431 It is conjectured that a(n) = A111395(n) for all n >= 10 (see "Is the leading digit of the decimal expansion of the prime zeta function at n equal to the first digit of 5^n, for all integers n >= 10?" in Links).
%D A385431 Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
%D A385431 J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.
%H A385431 Robert G. Wilson v, <a href="/A385431/b385431.txt">Table of n, a(n) for n = 2..1001</a>
%H A385431 Henri Cohen, <a href="http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi">High Precision Computation of Hardy-Littlewood Constants</a>, Preprint, 1998.
%H A385431 Henri Cohen, <a href="/A221712/a221712.pdf">High-precision computation of Hardy-Littlewood constants</a>. [pdf copy, with permission]
%H A385431 X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Miscellaneous/constantsNumTheory.html">Some Constants from Number theory</a>.
%H A385431 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/5079681/is-the-leading-digit-of-the-decimal-expansion-of-the-prime-zeta-function-at-n">Is the leading digit of the decimal expansion of the prime zeta function at n equal to the first digit of 5^n, for all integers n >= 10?</a>.
%H A385431 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/4655237/what-is-the-sum-of-negative-integer-powers-of-all-prime-numbers">What is the sum of negative integer powers of all prime numbers?</a>.
%H A385431 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>.
%H A385431 Wikipedia, <a href="https://en.m.wikipedia.org/wiki/Prime_zeta_function">Prime zeta function</a>.
%F A385431 a(n) = most significant (nonzero) digit of P(n), where P(n) := Sum_{p prime} 1/p^n.
%F A385431 a(n) = ld(P(n)), where ld(x) := floor(x/10^floor(log_10(x))) and P(n) := Sum_{k >= 1} moebius(k)*log(zeta(n*k))/k.
%F A385431 For all n > 9, a(n) = most significant (nonzero) digit of 5^n (conjectured).
%e A385431 For n = 4, a(4) = 7 since the most significant digit of P(4) = Sum_{p prime} 1/p^4 = 0.07699313976424684494... is 7.
%t A385431 Table[Module[{digits, firstNonZero}, digits = First[RealDigits[N[Sum[MoebiusMu[n]*Log[Zeta[k*n]]/n, {n, 1, 200}], 100]]]; firstNonZero = Select[digits, Function[d, d != 0]][[1]]; firstNonZero], {k, 2, 88}]
%t A385431 $MaxExtraPrecision = 2^10; a[n_] := RealDigits[ Sum[ MoebiusMu[m]*Log[ Zeta[n*m]]/m,{m, 32}], 10, 16][[1, 1]]; Array[a, 87, 2] - (* _Robert G. Wilson v_, Jul 11 2025 *)
%o A385431 (PARI) a(n) = my(x=sumeulerrat(1/p, n)); while(x<1, x*=10); floor(x); \\ _Michel Marcus_, Jun 29 2025
%Y A385431 Cf. A000040, A085548, A085541, A085964 to A085969, A111395.
%K A385431 nonn,easy,base
%O A385431 2,1
%A A385431 _Marco RipĂ _, Jun 28 2025