A385434 Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2, reduced mod 3.
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1
Offset: 0
Examples
Triangle begins: [ 0] [1] [ 1] [1, 1] [ 2] [1, 0, 1] [ 3] [1, 1, 1, 1] [ 4] [1, 0, 2, 0, 1] [ 5] [1, 1, 2, 2, 1, 1] [ 6] [1, 0, 0, 0, 0, 0, 1] [ 7] [1, 1, 0, 0, 0, 0, 1, 1] [ 8] [1, 0, 1, 0, 0, 0, 1, 0, 1] [ 9] [1, 1, 1, 1, 0, 0, 1, 1, 1, 1] [10] [1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1] [11] [1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1]
Links
- Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., 396:212-219, 1989.
- Romeo Meštrović, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014. (See Equation (80) on p. 31.)
Programs
-
Mathematica
Table[Mod[QBinomial[n, k, 2],3], {n, 0, 11}, {k, 0, n}] // Flatten (* James C. McMahon, Jun 29 2025 *)
-
SageMath
def T(n, k): return mod(gaussian_binomial(n, k).subs(q=2), 3) for n in range(12): print([T(n, k) for k in range(n+1)]) # Peter Luschny, Jun 29 2025
Formula
a(n) = A022166(n) mod 3.
T(2n, 2k) = T(2n+1, 2k) = T(2n, 2k+1) = binomial(n, k) mod 3; T(2n, 2k+1) = 0.
Comments