cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385434 Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2, reduced mod 3.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1
Offset: 0

Views

Author

David Radcliffe, Jun 28 2025

Keywords

Comments

Row sums give A385435.

Examples

			Triangle begins:
  [ 0] [1]
  [ 1] [1, 1]
  [ 2] [1, 0, 1]
  [ 3] [1, 1, 1, 1]
  [ 4] [1, 0, 2, 0, 1]
  [ 5] [1, 1, 2, 2, 1, 1]
  [ 6] [1, 0, 0, 0, 0, 0, 1]
  [ 7] [1, 1, 0, 0, 0, 0, 1, 1]
  [ 8] [1, 0, 1, 0, 0, 0, 1, 0, 1]
  [ 9] [1, 1, 1, 1, 0, 0, 1, 1, 1, 1]
  [10] [1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1]
  [11] [1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1]
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[QBinomial[n, k, 2],3], {n, 0, 11}, {k, 0, n}] // Flatten  (* James C. McMahon, Jun 29 2025 *)
  • SageMath
    def T(n, k): return mod(gaussian_binomial(n, k).subs(q=2), 3)
    for n in range(12): print([T(n, k) for k in range(n+1)])  # Peter Luschny, Jun 29 2025

Formula

a(n) = A022166(n) mod 3.
T(2n, 2k) = T(2n+1, 2k) = T(2n, 2k+1) = binomial(n, k) mod 3; T(2n, 2k+1) = 0.