This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385436 #30 Jul 09 2025 10:17:25 %S A385436 0,2,1,4,5,3,6,8,10,7,9,12,16,20,14,11,18,23,31,38,27,13,21,34,44,58, %T A385436 71,51,15,25,40,64,82,108,132,95,17,29,47,75,119,152,200,244,176,19, %U A385436 32,54,88,139,220,281,369,450,325,22,36,60,101,163,257,406,518,680 %N A385436 Tribonacci array of the second kind, read by upward antidiagonals. %C A385436 The array is, as a sequence, a permutation of the nonnegative integers; however it does not satisfy the conditions for interspersion and dispersion as given by Eric Weisstein's World of Mathematics. However, when all terms are increased by 1, it does satisfy the conditions for interspersion and dispersion! %C A385436 Rows satisfy the recurrence: T(m,k) = 2*T(m,k-1) - T(m,k-4) for all k>4. %C A385436 This array belongs to a family of Wythoff like arrays, based on binary number representations like the greedy and lazy Fibonacci number representations (see A035513 and A372501 for arrays), greedy and lazy Narayana number representations (A136189 for the array related to greedy representation). %C A385436 The array is related to the lazy tribonacci number representation A352103. The first column lists the even numbers, i.e., for wich 0 suffix A352103(T(m,1)). The odd numbers are represented in the columns k > 1: A352103(T(m,k)) = A352103(T(m,1)) + 1^(k-1). Here + stands for concatenation and ^ stands for repeated concatenation. %H A385436 A.H.M. Smeets, <a href="/A385436/b385436.txt">Table of n, a(n) for n = 1..20100</a> (first 200 antidiagonals). %H A385436 Larry Ericksen and Peter G. Anderson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/50-1/EricksenAnderson.pdf">Patterns in differences between rows in k-Zeckendorf arrays</a>, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18. %H A385436 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/33-1/kimberling.pdf">The Zeckendorf array equals the Wythoff array</a>, Fibonacci Quarterly 33 (1995) 3-8. %H A385436 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Interspersion.html">Interspersion</a>. %H A385436 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SequenceDispersion.html">Sequence Dispersion</a>. %e A385436 Array including some prepended columns (p = 1..4): %e A385436 p=4 p=3 p=2 p=1 | k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 %e A385436 -2 -1 -1 -1 | 0 1 3 7 14 27 51 95 176 325 %e A385436 -2 -1 0 0 | 2 5 10 20 38 71 132 244 450 829 %e A385436 -2 0 0 1 | 4 8 16 31 58 108 200 369 680 %e A385436 -2 0 1 2 | 6 12 23 44 82 152 281 518 %e A385436 -1 0 2 4 | 9 18 34 64 119 220 406 748 %e A385436 -1 1 2 5 | 11 21 40 75 139 257 474 873 %e A385436 -1 1 3 6 | 13 25 47 88 163 301 555 1022 %e A385436 -1 1 4 7 | 15 29 54 101 187 345 636 1171 %e A385436 -1 2 4 8 | 17 32 60 112 207 382 704 1296 %e A385436 -1 2 5 9 | 19 36 67 125 %e A385436 0 2 6 11 | 22 42 78 145 %e A385436 Each row of the array satisfies the recurrence relation T(m,k) = 2*T(m,k-1) - T(m,k-4); from this, the prepended columns are obtained by rowwise backward recursion. %o A385436 (Python) %o A385436 def ToDual_111_Zeck(n): %o A385436 if n == 0: %o A385436 return "0" %o A385436 f0, f1, f2, sf = 1, 0, 0, 0 %o A385436 while n > sf: %o A385436 f0, f1, f2 = f0+f1+f2, f0, f1 %o A385436 sf += f0 %o A385436 r, s = sf-n, "1" %o A385436 while f0 > 1: %o A385436 f0, f1, f2 = f1, f2, f0-f1-f2 %o A385436 r, s = r%f0, s+str(1-r//f0) %o A385436 return s %o A385436 def From_111_Zeck(s): %o A385436 f0, f1, f2, i, n = 1, 1, 0, len(s), 0 %o A385436 while i > 0: %o A385436 i -= 1 %o A385436 f0, f1, f2, n = f0+f1+f2, f0, f1, n+int(s[i])*f0 %o A385436 return n %o A385436 d, a, n, c1 = 0, 0, 0, [] %o A385436 while d < 11: %o A385436 s = ToDual_111_Zeck(a) %o A385436 if s[len(s)-1] == "0": # == even %o A385436 n, d = n+1, d+1 %o A385436 print(a, end = ", ") %o A385436 i, c1, p1 = d-1, c1+[s], "" %o A385436 while i > 0: %o A385436 n, i, p1 = n+1, i-1, p1+"1" %o A385436 print(From_111_Zeck(c1[i]+p1), end = ", ") %o A385436 a += 1 %Y A385436 Cf. A035513, A136189, A372501, A027084 (m=1), A351631 (k=1), A352103. %Y A385436 Prepended columns: A385455 (p=1), A385532 (p=2), A385533 (p=3). %K A385436 nonn,tabl %O A385436 1,2 %A A385436 _A.H.M. Smeets_, Jun 28 2025