A385449 Irregular triangle, read by rows: row n gives the pair of proper positive fundamental solutions (x, y) of the form x^2 - 2*y^2 representing -A057126(n).
1, 1, 4, 3, 1, 2, 5, 4, 2, 3, 6, 5, 1, 3, 9, 7, 3, 4, 7, 6, 1, 4, 13, 10, 4, 5, 8, 7, 3, 5, 11, 9, 2, 5, 14, 11, 5, 6, 9, 8, 1, 5, 17, 13, 6, 7, 10, 9, 1, 6, 21, 16, 5, 7, 13, 11, 7, 8, 11, 10, 4, 7, 16, 13, 3, 7, 19, 15, 2, 7, 22, 17, 1, 7, 25, 19, 8, 9, 12, 11, 5, 8, 17, 14, 7, 9, 15, 13, 3, 8, 23, 18, 9, 10, 13, 12
Offset: 1
Examples
n, A057126(n) /k 1 2 3 4 ... 2^P | (X, Y) = (2*y - x, x - y) ------------------------------------------------------------------- 1, 1 | 1 1 1 | 1 0 (3 2) 2, 2 | 4 3 1 | 2 1 3, 7 | 1 2, 5 4 2 | 3 -1 (5 3), 3 1 4, 14 = 2*7 | 2 3, 6 5 2 | 4 -1 (8 5), 4 1 5, 17 | 1 3, 9 7 2 | 5 -2 (7 4), 5 2 6, 23 | 3 4, 7 6 2 | 5 -1 (11 7), 5, 1 7, 31 | 1 4, 13 10 2 | 7 -3 (9 5), 7 3 8, 34 = 2*17 | 4 5, 8 7 2 | 6 -1 (14 9), 6 1 9, 41 | 3 5, 11 9 2 | 7 -2 (13 8), 7 2 10, 46 = 2*23 | 2 5, 14 11 2 | 8 -3 (12 7), 8 3 11, 47 | 5 6, 9 8 2 | 7 -1 (17 11), 7 1 12, 49 = 7^2 | 1 5, 17 13 2 | 9 -4 (11 6), 9 4 13, 62 = 2*31 | 6 7, 10 9 2 | 8 -1 (20 13), 8 1 14, 71 | 1 6, 21 16 2 | 11 -5 (13 7), 11 5 15, 73 | 5 7, 13 11 2 | 9 -2 (19 12), 9 2 16, 79 | 7 8, 11 10 2 | 9 -1 (23 15), 9 1 17, 82 = 2*41 | 4 7, 16 13 2 | 10 -3 (18 11), 10 3 18, 89 | 3 7, 19 15 2 | 11 -4 (17 10), 11 4 19, 94 = 2*47 | 2 7, 22 17 2 | 12 -5 (16 9), 12 5 20, 97 | 1 7, 25 19 2 | 13 -6 (15 8), 13 6 21, 98 = 2*7^2 | 8 9, 12 11 2 | 10 -1 (26 17), 10 1 ... The corresponding fundamental positive proper solutions of X^2 - 2*Y^2 = +119 are: [13 -5 (19 11), 13, 5] and [11 -1 (29 19), 11 1].
Links
- Wolfdieter Lang, On Positive Integer Descartes-Steiner Curvature Quintuplets, arXiv:2503.08631 [nucl-th], 2025.
Comments