cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385454 Difference of the largest and smallest semiperimeters of an integral rectangle with area n.

This page as a plain text file.
%I A385454 #20 Jul 01 2025 01:06:05
%S A385454 0,0,0,1,0,2,0,3,4,4,0,6,0,6,8,9,0,10,0,12,12,10,0,15,16,12,16,18,0,
%T A385454 20,0,21,20,16,24,25,0,18,24,28,0,30,0,30,32,22,0,35,36,36,32,36,0,40,
%U A385454 40,42,36,28,0,45,0,30,48,49,48,50,0,48,44,54,0,56,0
%N A385454 Difference of the largest and smallest semiperimeters of an integral rectangle with area n.
%C A385454 For all noncomposite n, a(n) = 0.
%C A385454 For each square k^2, a(k^2) = (k^2 + 1) - 2*k = (k-1)^2.
%H A385454 James C. McMahon, <a href="/A385454/b385454.txt">Table of n, a(n) for n = 1..10000</a>
%F A385454 a(n) = 1 + n - A063655(n).
%e A385454 The largest semiperimeter of an integral rectangle with area 9 is 10 (1 x 9 rectangle); the smallest semiperimeter is 6 (3 x 3 rectangle). The difference, a(9) = 4.
%t A385454 a[n_]:=1+n-2Median[Divisors[n]];Array[a,73]
%o A385454 (Python)
%o A385454 from sympy import divisors
%o A385454 def A385454(n):
%o A385454     l = len(d:=divisors(n))
%o A385454     return n+1-d[l-1>>1]-d[l>>1] # _Chai Wah Wu_, Jul 01 2025
%Y A385454 Cf. A063655.
%K A385454 nonn
%O A385454 1,6
%A A385454 _James C. McMahon_, Jun 29 2025