This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385476 #28 Aug 26 2025 23:38:09 %S A385476 5,7,7,9,9,10,11,11,13,13,13,13,15,15,16,16,17,17,17,19,19,19,19,21, %T A385476 21,21,21,22,22,23,23,25,25,25,25,25,25,26,27,27,28,28,29,29,29,29,31, %U A385476 31,31,31,31,31,33,33,33,33,34,34,35,35,36,36,37,37,37,37 %N A385476 Values of u in the quartets (1, u, v, w) of type 3; i.e., values of u for solutions to (1 - u) = v(v - w), in distinct positive integers, with v > 1, sorted by nondecreasing values of u; see Comments. %C A385476 A 4-tuple (m, u, v, w) is a quartet of type 3 if m, u, v, w are distinct positive integers such that m < v and m*(m - u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 1. %e A385476 First 20 quartets (1,u,v,w) of type 3: %e A385476 m u v w %e A385476 1 5 2 4 %e A385476 1 7 2 5 %e A385476 1 7 3 5 %e A385476 1 9 2 6 %e A385476 1 9 4 6 %e A385476 1 10 3 6 %e A385476 1 11 2 7 %e A385476 1 11 5 7 %e A385476 1 13 2 8 %e A385476 1 13 3 7 %e A385476 1 13 4 7 %e A385476 1 13 6 8 %e A385476 1 15 2 9 %e A385476 1 15 7 9 %e A385476 1 16 3 5 %e A385476 1 16 3 8 %e A385476 1 17 2 10 %e A385476 1 17 4 8 %e A385476 1 17 8 10 %e A385476 1 19 2 11 %e A385476 1(1-11) = 5(5-7), so (1, 11, 5, 7) is in the list. %t A385476 solnsM[m_Integer?Positive, u_Integer?Positive] := %t A385476 Module[{n = m (m - u), nn, sgn, ds, tups}, If[n == 0, Return[{}]]; %t A385476 sgn = Sign[n]; nn = Abs[n]; %t A385476 ds = Divisors[nn]; %t A385476 If[sgn > 0, ds = Select[ds, # < nn/# &]]; %t A385476 tups = ({m, u, nn/#, nn/# - sgn #} & /@ ds); %t A385476 Select[tups, #[[3]] > 1 && #[[4]] > 0 && #[[2]] =!= #[[4]](*&& %t A385476 Length@DeleteDuplicates[#]==4*)&]]; %t A385476 (solns = %t A385476 Sort[Flatten[Map[solnsM[1, #] &, Range[2, 30]], 1]]) // ColumnForm %t A385476 Map[#[[2]] &, solns] (*A385476*) %t A385476 Map[#[[3]] &, solns] (*A163870*) %t A385476 Map[#[[4]] &, solns] (*A385246*) %t A385476 (* _Peter J. C. Moses_, Aug 22 2025 *) %Y A385476 Cf. A385182 (type 1), A386218 (type 2), A386631, A385246. %K A385476 nonn,new %O A385476 1,1 %A A385476 _Clark Kimberling_, Aug 16 2025