cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385494 Total number of 1's in the decimal digits of the divisors of n.

This page as a plain text file.
%I A385494 #33 Aug 29 2025 10:16:35
%S A385494 1,1,1,1,1,1,1,1,1,2,3,2,2,2,2,2,2,2,2,2,2,3,1,2,1,2,1,2,1,3,2,2,3,2,
%T A385494 1,3,1,2,2,2,2,3,1,3,2,1,1,3,1,2,3,2,1,2,3,2,2,1,1,4,2,2,2,2,2,3,1,2,
%U A385494 1,3,2,3,1,1,2,2,3,2,1,3,2,2,1,4,2,1,1,3,1,4,3,1,2,1,2,3,1,2,3,3
%N A385494 Total number of 1's in the decimal digits of the divisors of n.
%H A385494 Robert Israel, <a href="/A385494/b385494.txt">Table of n, a(n) for n = 1..10000</a>
%e A385494 a(11) = 3 because of the divisors of 11, there is one 1 in 1 and two in 11.
%e A385494 a(60) = 4 because of the divisors of 60, there is one 1 in 1, one in 10, one in 12, one in 15 and none in the other divisors.
%p A385494 f:= proc(n) local d; add(numboccur(1, convert(d,base,10)),d=numtheory:-divisors(n)) end proc:
%p A385494 map(f, [$1..100]);
%t A385494 a[n_]:=Count[IntegerDigits[Divisors[n]]//Flatten,1]; Array[a,100] (* _Stefano Spezia_, Aug 28 2025 *)
%o A385494 (Python)
%o A385494 from sympy import divisors
%o A385494 def a(n): return sum(str(d).count("1") for d in divisors(n, generator=True))
%o A385494 print([a(n) for n in range(1, 101)]) # _Michael S. Branicky_, Aug 27 2025
%o A385494 (PARI) a(n) = sumdiv(n, d, #select(x->(x==1), digits(d))); \\ _Michel Marcus_, Aug 28 2025
%Y A385494 Cf. A093653, A387357.
%K A385494 nonn,base,new
%O A385494 1,10
%A A385494 _Robert Israel_, Aug 27 2025