cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385513 The numbers of people in the "SpellUnder-Down" variant of the Josephus problem such that the last person is freed.

Original entry on oeis.org

1, 6, 7, 105, 181, 215, 821, 1907, 3176, 23388, 55058
Offset: 1

Views

Author

Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Jul 01 2025

Keywords

Comments

In SpellUnder-Down dealing, we spell the number of the next card, putting a card under for each letter in the number, then we deal the next card. So we start with putting 3 cards under, for O-N-E, then deal, then 3 under for T-W-O, then deal, then 5 under for T-H-R-E-E, then deal. The dealing sequence is highly irregular because it depends on English spelling. The dealing pattern starts: UUUDUUUDUUUUUD. In the corresponding Josephus problem, we skip the next person for each under dealing, and eliminate the next person for each down dealing.
This sequence can be used in magic tricks with the SpellUnder-Down dealing pattern. The deck sizes in this sequence guarantee that after the dealing, the last card dealt is the one that was initially on the bottom.
The classical Josephus problem corresponds to under-down dealing. In this case, the last person is freed when the number of people is a power of 2 minus 1.
A naive probabilistic argument predicts the probability that A380204(k) = k is 1/k and expects this sequence to be infinite and distributed roughly as A002387. - Michael S. Branicky, Jul 24 2025

Examples

			Suppose there are 5 people in a circle. We start with skipping three people for O-N-E. After three people are skipped, the person number 4 is eliminated. The leftover people are 5,1,2,3 in order. Then we skip three people for T-W-O. The person number 3 eliminated, and the leftover people are 5,1,2 in order. Then we skip 5 people for T-H-R-E-E, and person number 2 is eliminated, and the leftover people are 5,1 in order. Then we skip four people for F-O-U-R. person number 5 is eliminated. Person 1 is freed. As person 1 is not last, 5 is NOT in this sequence.
		

Crossrefs

Formula

{k | A380204(k) = k}. - Michael S. Branicky, Jul 24 2025

Extensions

a(10)-a(11) from Michael S. Branicky, Jul 24 2025