cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385534 Decimal expansion of the volume of a biaugmented pentagonal prism with unit edge.

Original entry on oeis.org

2, 1, 9, 1, 8, 8, 1, 9, 2, 1, 3, 7, 9, 9, 9, 8, 6, 0, 5, 6, 9, 2, 9, 0, 8, 2, 1, 8, 7, 9, 1, 8, 4, 2, 2, 9, 2, 2, 6, 3, 9, 3, 1, 4, 6, 1, 8, 0, 2, 5, 1, 4, 3, 5, 3, 5, 9, 9, 3, 2, 1, 2, 8, 6, 3, 5, 4, 1, 1, 3, 1, 5, 1, 6, 9, 6, 3, 3, 5, 2, 4, 4, 2, 8, 2, 5, 7, 0, 4, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 03 2025

Keywords

Comments

The biaugmented pentagonal prism is Johnson solid J_53.

Examples

			2.1918819213799986056929082187918422922639314618025...
		

Crossrefs

Cf. A385535 (surface area).

Programs

  • Mathematica
    First[RealDigits[Sqrt[257 + 90*Sqrt[5] + 24*Sqrt[50 + 20*Sqrt[5]]]/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J53", "Volume"], 10, 100]]

Formula

Equals sqrt(257 + 90*sqrt(5) + 24*sqrt(50 + 20*sqrt(5)))/12 = sqrt(257 + 90*A002163 + 24*sqrt(50 + 20*A002163))/12.
Equals the largest root of 429981696*x^8 - 3069591552*x^6 + 5343542784*x^4 - 2504731968*x^2 + 10569001.

A386461 Decimal expansion of the surface area of a biaugmented truncated cube with unit edges.

Original entry on oeis.org

3, 6, 2, 4, 1, 9, 1, 1, 7, 2, 9, 2, 6, 0, 2, 6, 9, 5, 6, 4, 5, 2, 3, 2, 9, 5, 1, 5, 9, 7, 0, 1, 0, 7, 4, 0, 9, 6, 3, 2, 8, 5, 9, 6, 0, 1, 8, 2, 5, 7, 1, 0, 7, 0, 9, 7, 6, 3, 6, 6, 6, 5, 8, 2, 1, 7, 3, 3, 5, 9, 1, 8, 9, 5, 3, 3, 2, 0, 5, 6, 4, 5, 9, 1, 2, 7, 6, 8, 5, 0
Offset: 2

Views

Author

Paolo Xausa, Jul 23 2025

Keywords

Comments

The biaugmented truncated cube is Johnson solid J_67.

Examples

			36.241911729260269564523295159701074096328596018257...
		

Crossrefs

Cf. A010524 (volume - 9).

Programs

  • Mathematica
    First[RealDigits[18 + 8*Sqrt[2] + Sqrt[48], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J67", "SurfaceArea"], 10, 100]]

Formula

Equals 2*(9 + 4*sqrt(2) + 2*sqrt(3)) = 2*(9 + A010487 + A010469) = 18 + A377342 + A010502.
Equals the largest root of x^4 - 72*x^3 + 1592*x^2 - 10656*x - 2672.
Showing 1-2 of 2 results.