A385536 Integers k formed by the concatenation of 3 consecutive prime numbers such that k is divisible by at least one of those 3 primes.
235, 357, 71113, 374143, 616771, 167173179, 143914471451, 909071909089909091, 104651162787110465116278991046511627907
Offset: 1
Examples
235 is a term, since it is the concatenation of the consecutive primes 2, 3, 5 and is divisible by 5. 2, 3 and 5: 235 = 5*47 3, 5, and 7: 357 = 3*119 = 7*51 7, 11 and 13: 71113 = 7*10159 37, 41 and 43: 374143 = 43*8701 61, 67 and 71: 616771 = 61*10111 167, 173 and 179: 167173179 = 167*1001037 1439, 1447 and 1451: 143914471451 = 1447*99457133 909071, 909089 and 909091: 909071909089909091 = 909091*999979000001
Programs
-
Maple
tcat:= proc(a,b,c) c + (b + 10^(1+ilog10(b))*a)*10^(1+ilog10(c)) end proc: R:= NULL: count:= 0: q:= 2: r:= 3: while count < 8 do p:= q; q:= r; r:= nextprime(r); x:= tcat(p,q,r); if igcd(x,p*q*r)>1 then R:= R,x; count:= count+1; fi od: R; # Robert Israel, Jul 06 2025
-
Mathematica
cat[s_] := FromDigits[Flatten[IntegerDigits[s]]]; q[s_] := AnyTrue[s, Divisible[cat[s], #] &]; cat /@ Select[Partition[Prime[Range[72000]], 3, 1], q] (* Amiram Eldar, Jul 03 2025 *)
Extensions
a(9) from Michael S. Branicky, Jul 03 2025
Comments