A385541 Number of divisors of n such that d^d == (-d)^d == d (mod n).
1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1
Offset: 1
Keywords
Programs
-
Magma
[1 + #[d: d in [1..n-1] | n mod d eq 0 and Modexp(d,d,n) eq d and Modexp(-d,d,n) eq d]: n in [1..100]];
-
Mathematica
a[n_] := DivisorSum[n, 1 &, PowerMod[#, #, n] == PowerMod[-#, #, n] == Mod[#, n] &]; Array[a, 100] (* Amiram Eldar, Jul 03 2025 *)