cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385542 The sum of the aliquot divisors of n that are powerful.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 13, 1, 10, 1, 5, 1, 1, 1, 13, 1, 1, 10, 5, 1, 1, 1, 29, 1, 1, 1, 14, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 1, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 61, 1, 1, 1, 5, 1, 1, 1, 58, 1, 1, 26, 5, 1, 1, 1, 29, 37
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1) - p; a[1] = 0; a[n_] := Times @@ f @@@ (fct = FactorInteger[n]) - If[AllTrue[fct[[;;, 2]], # > 1 &], n, 0]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), s); s = prod(i=1, #f~, (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1) - f[i,1]); if(n==1 || vecmin(f[,2]) > 1, s -= n); s};

Formula

a(n) = Sum_{d|n, d < n} A112526(d) * d.
a(n) = A183097(n) - A112526(n) * n.
a(n) = 1 if and only if n is either a squarefree number (A005117) > 1 or a square of a prime (A001248), i.e., if and only if n is in A167207 \ {1}.
Dirichlet g.f.: (zeta(s) - 1)* zeta(2*s-2) * zeta(3*s-3) / zeta(6*s-6).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)*(zeta(3/2)-1)/(3*zeta(3)) = 1.168033893310319119603... .
More precise asymptotics: Sum_{k=1..n} a(k) ~ (zeta(3/2) - 1)*zeta(3/2)*n^(3/2) / (3*zeta(3)) + 3*zeta(2/3)*(zeta(4/3) - 1)*n^(4/3) / (2*Pi^2) - n/2. - Vaclav Kotesovec, Jul 03 2025