cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385547 E.g.f. A(x) satisfies A(x) = Sum_{k>=0} x^k/k! * A(k^2*x).

This page as a plain text file.
%I A385547 #11 Jul 03 2025 14:24:21
%S A385547 1,1,3,22,413,18656,2030287,513423436,300561564025,398653905380896,
%T A385547 1192260459720446171,7941386767782184832204,
%U A385547 117226647607145106003271333,3808187092459275036716509871776,271053748414379190468548152694690551,42093494971632722160142716694680694172956
%N A385547 E.g.f. A(x) satisfies A(x) = Sum_{k>=0} x^k/k! * A(k^2*x).
%F A385547 a(0) = 1; a(n) = Sum_{k=0..n-1} (n-k)^(2*k) * binomial(n,k) * a(k).
%t A385547 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n,k] * (n-k)^(2*k) * a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 20}] (* _Vaclav Kotesovec_, Jul 03 2025 *)
%o A385547 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (i-j)^(2*j)*binomial(i, j)*v[j+1])); v;
%Y A385547 Cf. A125281, A385543.
%K A385547 nonn
%O A385547 0,3
%A A385547 _Seiichi Manyama_, Jul 03 2025