cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385553 Period of {binomial(N,n) mod 6: N in Z}.

Original entry on oeis.org

1, 6, 12, 36, 72, 72, 72, 72, 144, 432, 432, 432, 432, 432, 432, 432, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 2592, 2592, 2592, 2592, 2592, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184, 5184
Offset: 0

Views

Author

Jianing Song, Jul 03 2025

Keywords

Examples

			For N == 0, 1, ..., 35 (mod 36), binomial(N,3) == {0, 0, 0, 1, 4, 4, 2, 5, 2, 0, 0, 3, 4, 4, 4, 5, 2, 2, 0, 3, 0, 4, 4, 1, 2, 2, 2, 3, 0, 0, 4, 1, 4, 2, 2, 5} (mod 6).
For N == 0, 1, ..., 71 (mod 72), binomial(N,4) == {0, 0, 0, 0, 1, 5, 3, 5, 4, 0, 0, 0, 3, 1, 5, 3, 2, 4, 0, 0, 3, 3, 1, 5, 0, 2, 4, 0, 3, 3, 3, 1, 2, 0, 2, 4, 3, 3, 3, 3, 4, 2, 0, 2, 1, 3, 3, 3, 0, 4, 2, 0, 5, 1, 3, 3, 0, 0, 4, 2, 3, 5, 1, 3, 0, 0, 0, 4, 5, 3, 5, 1} (mod 6).
		

Crossrefs

Column 6 of A349593. A062383, A064235 (if offset 0), A385552, and A385554 are respectively columns 2, 3, 5, and 10.

Programs

  • PARI
    a(n) = if(n, (2^(logint(n,2)+1)) * (3^(logint(n,3)+1)), 1)

Formula

a(n) = (the smallest power of 2 > n) * (the smallest power of 3 > n) = A062383(n) * A064235(n+1). For the general result, see A349593.