This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385554 #15 Jul 06 2025 10:06:58 %S A385554 1,10,20,20,40,200,200,200,400,400,400,400,400,400,400,400,800,800, %T A385554 800,800,800,800,800,800,800,4000,4000,4000,4000,4000,4000,4000,8000, %U A385554 8000,8000,8000,8000,8000,8000,8000,8000,8000,8000,8000,8000,8000,8000,8000,8000,8000,8000,8000 %N A385554 Period of {binomial(N,n) mod 10: N in Z}. %H A385554 Jianing Song, <a href="/A385554/b385554.txt">Table of n, a(n) for n = 0..1024</a> %F A385554 a(n) = (the smallest power of 2 > n) * (the smallest power of 5 > n) = A062383(n) * A385552(n). For the general result, see A349593. %e A385554 For N == 0, 1, ..., 19 (mod 20), binomial(N,3) == {0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9} (mod 10). %e A385554 For N == 0, 1, ..., 39 (mod 40), binomial(N,4) == {0, 0, 0, 0, 1, 5, 5, 5, 0, 6, 0, 0, 5, 5, 1, 5, 0, 0, 0, 6, 5, 5, 5, 5, 6, 0, 0, 0, 5, 1, 5, 5, 0, 0, 6, 0, 5, 5, 5, 1} (mod 10). %o A385554 (PARI) a(n) = if(n, (2^(logint(n,2)+1)) * (5^(logint(n,5)+1)), 1) %Y A385554 Column 10 of A349593. A062383, A064235 (if offset 0), A385552, and A385553 are respectively columns 2, 3, 5, and 6. %K A385554 nonn,easy %O A385554 0,2 %A A385554 _Jianing Song_, Jul 03 2025