cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385557 Period of {binomial(N,5) mod n: N in Z}. Also, period of {binomial(N,6) mod n: N in Z}.

Original entry on oeis.org

1, 8, 9, 16, 25, 72, 7, 32, 27, 200, 11, 144, 13, 56, 225, 64, 17, 216, 19, 400, 63, 88, 23, 288, 125, 104, 81, 112, 29, 1800, 31, 128, 99, 136, 175, 432, 37, 152, 117, 800, 41, 504, 43, 176, 675, 184, 47, 576, 49, 1000, 153, 208, 53, 648, 275, 224, 171, 232, 59, 3600
Offset: 1

Views

Author

Jianing Song, Jul 03 2025

Keywords

Examples

			For N == 0, 1, ..., 71 (mod 72), binomial(N,5) == {0, 0, 0, 0, 0, 1, 0, 3, 2, 0, 0, 0, 0, 3, 4, 3, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 2, 0, 0, 3, 0, 3, 4, 0, 0, 2, 0, 3, 0, 3, 0, 4, 0, 0, 2, 3, 0, 3, 0, 0, 4, 0, 0, 5, 0, 3, 0, 0, 0, 4, 0, 3, 2, 3, 0, 0, 0, 0, 4, 3, 0, 5} (mod 6), and binomial(N,6) == {0, 0, 0, 0, 0, 0, 1, 1, 4, 0, 0, 0, 0, 0, 3, 1, 4, 4, 0, 0, 0, 0, 3, 3, 4, 4, 4, 0, 0, 0, 3, 3, 0, 4, 4, 4, 0, 0, 3, 3, 0, 0, 4, 4, 4, 0, 3, 3, 0, 0, 0, 4, 4, 4, 3, 3, 0, 0, 0, 0, 4, 4, 1, 3, 0, 0, 0, 0, 0, 4, 1, 1} (mod 6).
		

Crossrefs

Rows n = 5 and 6 of A349593. A022998, A385555, A385556, A385558, A385559, and A385560 are respectively rows 2, 3, 4, 7, 8, and 9-10.

Programs

  • Mathematica
    A385557[n_] := If[n == 1, 1, n*Product[p^Floor[Log[p, 5]], {p, FactorInteger[n][[All, 1]]}]];
    Array[A385557, 100] (* Paolo Xausa, Jul 07 2025 *)
    a[n_] := n * GCD[n, 30] * (2 - Mod[n, 2]); Array[a, 100] (* Amiram Eldar, Jul 07 2025 *)
  • PARI
    a(n, {choices=5}) = my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); r *= p^(logint(choices, p)+e)); return(r)

Formula

Multiplicative with a(2^e) = 2^(e+2), a(3^e) = 3^(e+1), a(5^e) = 5^(e+1), and a(p^e) = p^e for primes p >= 7.
From Amiram Eldar, Jul 07 2025: (Start)
a(n) = n * gcd(30, n) * (2 - (n mod 2)).
Dirichlet g.f.: zeta(s-1) * (1 + 3/2*(s-1)) * (1 + 2/3*(s-1)) * (1 + 4/5*(s-1)).
Sum_{k=1..n} a(k) ~ (15/4) * n^2. (End)