A385558 Period of {binomial(N,7) mod n: N in Z}.
1, 8, 9, 16, 25, 72, 49, 32, 27, 200, 11, 144, 13, 392, 225, 64, 17, 216, 19, 400, 441, 88, 23, 288, 125, 104, 81, 784, 29, 1800, 31, 128, 99, 136, 1225, 432, 37, 152, 117, 800, 41, 3528, 43, 176, 675, 184, 47, 576, 343, 1000, 153, 208, 53, 648, 275, 1568, 171, 232, 59, 3600
Offset: 1
Examples
For N == 0, 1, ..., 48 (mod 49), binomial(N,7) == {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6} (mod 7).
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
A385558[n_] := If[n == 1, 1, n*Product[p^Floor[Log[p, 7]], {p, FactorInteger[n][[All, 1]]}]]; Array[A385558, 100] (* Paolo Xausa, Jul 07 2025 *) a[n_] := n * GCD[n, 210] * (2 - Mod[n, 2]); Array[a, 100] (* Amiram Eldar, Jul 07 2025 *)
-
PARI
a(n, {choices=7}) = my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); r *= p^(logint(choices, p)+e)); return(r)
Formula
Multiplicative with a(2^e) = 2^(e+2), a(3^e) = 3^(e+1), a(5^e) = 5^(e+1), a(7^e) = 7^(e+1), and a(p^e) = p^e for primes p >= 11.
From Amiram Eldar, Jul 07 2025: (Start)
a(n) = n * gcd(210, n) * (2 - (n mod 2)).
Dirichlet g.f.: zeta(s-1) * (1 + 3/2*(s-1)) * (1 + 2/3*(s-1)) * (1 + 4/5*(s-1)) * (1 + 6/7*(s-1)).
Sum_{k=1..n} a(k) ~ (195/28) * n^2. (End)