cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A385561 Numbers m such that (1/m) * Sum_{k=1..m} phi(k)/k is closer to 6/Pi^2 than it is for any number smaller than m, where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 12, 16, 22, 28, 36, 66, 96, 100, 126, 156, 190, 330, 430, 540, 820, 876, 1086, 1422, 10596, 10836, 18096, 35796, 55786, 69336, 111100, 168666, 284650, 905950, 1482300, 1745590, 2405560, 2661310, 4023306, 5869956, 17454580, 25670646, 51305346, 79969618, 211025650, 622626790
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2025

Keywords

Comments

6/Pi^2 is the asymptotic mean of phi(k)/k, i.e., lim_{m->oo} (1/m) * Sum_{k=1..m} phi(k)/k = 6/Pi^2 (Walfisz, 1963; Sándor et al., 2005).

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 27.
  • Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Berlin, 1963.

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Module[{s = {}, sum = 0, dm = 1, d}, Do[sum += EulerPhi[k]/k; If[(d = Abs[sum/k - 6/Pi^2]) < dm, dm = d; AppendTo[s, k]], {k, 1, lim}]; s]; seq[10^5]
  • PARI
    list(lim) = {my(sm = 0, dm = 1, d); for(k = 1, lim, sm += eulerphi(k)/k; d = abs(sm/k - 6/Pi^2); if(d < dm, dm = d; print1(k, ", ")));}
Showing 1-1 of 1 results.