A385574 Number of integer partitions of n with the same number of adjacent equal parts as adjacent unequal parts.
1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 10, 11, 13, 17, 20, 30, 36, 44, 55, 70, 86, 98, 128, 156, 190, 235, 288, 351, 409, 499, 603, 722, 863, 1025, 1227, 1461, 1757, 2061, 2444, 2892, 3406, 3996, 4708, 5497, 6430, 7595, 8835, 10294, 12027, 13971, 16252, 18887, 21878
Offset: 0
Keywords
Examples
The partition (5,3,2,1,1,1,1) has 4 runs ((5),(3),(2),(1,1,1,1)) and 4 anti-runs ((5,3,2,1),(1),(1),(1)) so is counted under a(14). The a(1) = 1 through a(10) = 10 reversed partitions (A = 10): (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (112) (113) (114) (115) (116) (117) (118) (122) (133) (224) (144) (226) (223) (233) (225) (244) (11123) (11124) (334) (11223) (11125) (11134) (11224) (11233) (12223)
Links
- Christian Sievers, Table of n, a(n) for n = 0..1000
Crossrefs
These partitions are ranked by A385576.
Programs
-
Mathematica
Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union[#]]==Length[Split[#,#2!=#1&]]&]],{n,0,30}]
-
PARI
lista(n)=Vec(polcoef((prod(i=1,n,1+x^i/(t*(1-t*x^i))+O(x*x^n))-1)*t+1,0,t)) \\ Christian Sievers, Jul 18 2025
Formula
For a partition p, let s(p) be its sum, e(p) the number of equal adjacent pairs, and d(p) the number of distinct adjacent pairs. Then Sum_{p partition} x^s(p) * t^(e(p)-d(p)) = (Product_{i>=1} (1 + x^i/(t*(1-t*x^i))) - 1) * t + 1, so a(n) is the coefficient of x^n*t^0 of this expression. - Christian Sievers, Jul 18 2025
Comments