cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385575 Numbers whose binary indices have the same number of adjacent parts differing by 1 as adjacent parts differing by more than 1.

This page as a plain text file.
%I A385575 #10 Jul 18 2025 22:02:46
%S A385575 1,2,4,8,11,13,16,19,22,25,26,32,35,38,44,49,50,52,64,67,70,76,87,88,
%T A385575 91,93,97,98,100,104,107,109,117,128,131,134,140,151,152,155,157,167,
%U A385575 174,176,179,182,185,186,193,194,196,200,203,205,208,211,214,217
%N A385575 Numbers whose binary indices have the same number of adjacent parts differing by 1 as adjacent parts differing by more than 1.
%C A385575 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%e A385575 The terms together with their binary expansions and binary indices begin:
%e A385575     1:       1 ~ {1}
%e A385575     2:      10 ~ {2}
%e A385575     4:     100 ~ {3}
%e A385575     8:    1000 ~ {4}
%e A385575    11:    1011 ~ {1,2,4}
%e A385575    13:    1101 ~ {1,3,4}
%e A385575    16:   10000 ~ {5}
%e A385575    19:   10011 ~ {1,2,5}
%e A385575    22:   10110 ~ {2,3,5}
%e A385575    25:   11001 ~ {1,4,5}
%e A385575    26:   11010 ~ {2,4,5}
%e A385575    32:  100000 ~ {6}
%e A385575    35:  100011 ~ {1,2,6}
%e A385575    38:  100110 ~ {2,3,6}
%e A385575    44:  101100 ~ {3,4,6}
%e A385575    49:  110001 ~ {1,5,6}
%e A385575    50:  110010 ~ {2,5,6}
%e A385575    52:  110100 ~ {3,5,6}
%e A385575    64: 1000000 ~ {7}
%e A385575    67: 1000011 ~ {1,2,7}
%e A385575    70: 1000110 ~ {2,3,7}
%e A385575    76: 1001100 ~ {3,4,7}
%e A385575    87: 1010111 ~ {1,2,3,5,7}
%e A385575    88: 1011000 ~ {4,5,7}
%e A385575    91: 1011011 ~ {1,2,4,5,7}
%e A385575    93: 1011101 ~ {1,3,4,5,7}
%e A385575    97: 1100001 ~ {1,6,7}
%e A385575    98: 1100010 ~ {2,6,7}
%e A385575   100: 1100100 ~ {3,6,7}
%t A385575 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A385575 Select[Range[100],Length[Split[bpe[#],#2==#1+1&]]==Length[Split[bpe[#],#2!=#1+1&]]&]
%o A385575 (PARI) is_ok(n)=hammingweight(n)==2*hammingweight(bitand(n,n>>1))+1 \\ _Christian Sievers_, Jul 18 2025
%Y A385575 The LHS rank statistic is A069010, counted by A034839 (for partitions A384881, A116674).
%Y A385575 The RHS rank statistic is A384890, counted by A384893 (for partitions A268193, A384905).
%Y A385575 Subsets of this type are counted by A385572, with n A217615.
%Y A385575 A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
%Y A385575 A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.
%Y A385575 Cf. A000079, A010027, A053538, A210034, A384177, A384879, A384889.
%K A385575 nonn
%O A385575 1,2
%A A385575 _Gus Wiseman_, Jul 04 2025