This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385575 #10 Jul 18 2025 22:02:46 %S A385575 1,2,4,8,11,13,16,19,22,25,26,32,35,38,44,49,50,52,64,67,70,76,87,88, %T A385575 91,93,97,98,100,104,107,109,117,128,131,134,140,151,152,155,157,167, %U A385575 174,176,179,182,185,186,193,194,196,200,203,205,208,211,214,217 %N A385575 Numbers whose binary indices have the same number of adjacent parts differing by 1 as adjacent parts differing by more than 1. %C A385575 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A385575 The terms together with their binary expansions and binary indices begin: %e A385575 1: 1 ~ {1} %e A385575 2: 10 ~ {2} %e A385575 4: 100 ~ {3} %e A385575 8: 1000 ~ {4} %e A385575 11: 1011 ~ {1,2,4} %e A385575 13: 1101 ~ {1,3,4} %e A385575 16: 10000 ~ {5} %e A385575 19: 10011 ~ {1,2,5} %e A385575 22: 10110 ~ {2,3,5} %e A385575 25: 11001 ~ {1,4,5} %e A385575 26: 11010 ~ {2,4,5} %e A385575 32: 100000 ~ {6} %e A385575 35: 100011 ~ {1,2,6} %e A385575 38: 100110 ~ {2,3,6} %e A385575 44: 101100 ~ {3,4,6} %e A385575 49: 110001 ~ {1,5,6} %e A385575 50: 110010 ~ {2,5,6} %e A385575 52: 110100 ~ {3,5,6} %e A385575 64: 1000000 ~ {7} %e A385575 67: 1000011 ~ {1,2,7} %e A385575 70: 1000110 ~ {2,3,7} %e A385575 76: 1001100 ~ {3,4,7} %e A385575 87: 1010111 ~ {1,2,3,5,7} %e A385575 88: 1011000 ~ {4,5,7} %e A385575 91: 1011011 ~ {1,2,4,5,7} %e A385575 93: 1011101 ~ {1,3,4,5,7} %e A385575 97: 1100001 ~ {1,6,7} %e A385575 98: 1100010 ~ {2,6,7} %e A385575 100: 1100100 ~ {3,6,7} %t A385575 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A385575 Select[Range[100],Length[Split[bpe[#],#2==#1+1&]]==Length[Split[bpe[#],#2!=#1+1&]]&] %o A385575 (PARI) is_ok(n)=hammingweight(n)==2*hammingweight(bitand(n,n>>1))+1 \\ _Christian Sievers_, Jul 18 2025 %Y A385575 The LHS rank statistic is A069010, counted by A034839 (for partitions A384881, A116674). %Y A385575 The RHS rank statistic is A384890, counted by A384893 (for partitions A268193, A384905). %Y A385575 Subsets of this type are counted by A385572, with n A217615. %Y A385575 A384175 counts subsets with all distinct lengths of maximal runs, complement A384176. %Y A385575 A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878. %Y A385575 Cf. A000079, A010027, A053538, A210034, A384177, A384879, A384889. %K A385575 nonn %O A385575 1,2 %A A385575 _Gus Wiseman_, Jul 04 2025