This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385576 #8 Jul 05 2025 09:59:39 %S A385576 1,2,3,5,7,11,12,13,17,18,19,20,23,28,29,31,37,41,43,44,45,47,50,52, %T A385576 53,59,61,63,67,68,71,73,75,76,79,83,89,92,97,98,99,101,103,107,109, %U A385576 113,116,117,120,124,127,131,137,139,147,148,149,151,153,157,163 %N A385576 Numbers whose prime indices have the same number of distinct elements as maximal anti-runs. %C A385576 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A385576 These are also numbers with the same number of adjacent equal prime indices as adjacent unequal prime indices. %F A385576 A001221(a(n)) = A375136(a(n)). %e A385576 The prime indices of 2640 are {1,1,1,1,2,3,5}, with 4 distinct parts {1,2,3,5} and 4 maximal anti-runs ((1),(1),(1),(2,3,5)), so 2640 is in the sequence. %e A385576 The terms together with their prime indices begin: %e A385576 1: {} %e A385576 2: {1} %e A385576 3: {2} %e A385576 5: {3} %e A385576 7: {4} %e A385576 11: {5} %e A385576 12: {1,1,2} %e A385576 13: {6} %e A385576 17: {7} %e A385576 18: {1,2,2} %e A385576 19: {8} %e A385576 20: {1,1,3} %e A385576 23: {9} %e A385576 28: {1,1,4} %e A385576 29: {10} %e A385576 31: {11} %e A385576 37: {12} %e A385576 41: {13} %e A385576 43: {14} %e A385576 44: {1,1,5} %e A385576 45: {2,2,3} %e A385576 47: {15} %t A385576 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A385576 Select[Range[100],#==1||PrimeNu[#]==Length[Split[prix[#],UnsameQ]]&] %Y A385576 The LHS is the rank statistic A001221, triangle counted by A116608. %Y A385576 The RHS is the rank statistic A375136, triangle counted by A133121. %Y A385576 These partitions are counted by A385574. %Y A385576 A034296 counts flat or gapless partitions, ranks A066311 or A073491. %Y A385576 A047993 counts partitions with max part = length, ranks A106529. %Y A385576 A356235 counts partitions with a neighborless singleton, ranks A356237. %Y A385576 A384877 gives lengths of maximal anti-runs of binary indices, firsts A384878. %Y A385576 A384893 counts subsets by maximal anti-runs, for partitions A268193, strict A384905. %Y A385576 A385572 counts subsets with the same number of runs as anti-runs, ranks A385575. %Y A385576 Cf. A044813, A046660, A210034, A297155, A356226, A361205, A384889, A385213. %K A385576 nonn %O A385576 1,2 %A A385576 _Gus Wiseman_, Jul 04 2025