cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385576 Numbers whose prime indices have the same number of distinct elements as maximal anti-runs.

This page as a plain text file.
%I A385576 #8 Jul 05 2025 09:59:39
%S A385576 1,2,3,5,7,11,12,13,17,18,19,20,23,28,29,31,37,41,43,44,45,47,50,52,
%T A385576 53,59,61,63,67,68,71,73,75,76,79,83,89,92,97,98,99,101,103,107,109,
%U A385576 113,116,117,120,124,127,131,137,139,147,148,149,151,153,157,163
%N A385576 Numbers whose prime indices have the same number of distinct elements as maximal anti-runs.
%C A385576 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A385576 These are also numbers with the same number of adjacent equal prime indices as adjacent unequal prime indices.
%F A385576 A001221(a(n)) = A375136(a(n)).
%e A385576 The prime indices of 2640 are {1,1,1,1,2,3,5}, with 4 distinct parts {1,2,3,5} and 4 maximal anti-runs ((1),(1),(1),(2,3,5)), so 2640 is in the sequence.
%e A385576 The terms together with their prime indices begin:
%e A385576    1: {}
%e A385576    2: {1}
%e A385576    3: {2}
%e A385576    5: {3}
%e A385576    7: {4}
%e A385576   11: {5}
%e A385576   12: {1,1,2}
%e A385576   13: {6}
%e A385576   17: {7}
%e A385576   18: {1,2,2}
%e A385576   19: {8}
%e A385576   20: {1,1,3}
%e A385576   23: {9}
%e A385576   28: {1,1,4}
%e A385576   29: {10}
%e A385576   31: {11}
%e A385576   37: {12}
%e A385576   41: {13}
%e A385576   43: {14}
%e A385576   44: {1,1,5}
%e A385576   45: {2,2,3}
%e A385576   47: {15}
%t A385576 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A385576 Select[Range[100],#==1||PrimeNu[#]==Length[Split[prix[#],UnsameQ]]&]
%Y A385576 The LHS is the rank statistic A001221, triangle counted by A116608.
%Y A385576 The RHS is the rank statistic A375136, triangle counted by A133121.
%Y A385576 These partitions are counted by A385574.
%Y A385576 A034296 counts flat or gapless partitions, ranks A066311 or A073491.
%Y A385576 A047993 counts partitions with max part = length, ranks A106529.
%Y A385576 A356235 counts partitions with a neighborless singleton, ranks A356237.
%Y A385576 A384877 gives lengths of maximal anti-runs of binary indices, firsts A384878.
%Y A385576 A384893 counts subsets by maximal anti-runs, for partitions A268193, strict A384905.
%Y A385576 A385572 counts subsets with the same number of runs as anti-runs, ranks A385575.
%Y A385576 Cf. A044813, A046660, A210034, A297155, A356226, A361205, A384889, A385213.
%K A385576 nonn
%O A385576 1,2
%A A385576 _Gus Wiseman_, Jul 04 2025