This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385581 #8 Jul 06 2025 11:33:41 %S A385581 1,2,1,3,6,1,4,15,22,1,5,28,95,88,1,6,45,252,681,372,1,7,66,525,2600, %T A385581 5277,1628,1,8,91,946,7065,29248,43086,7312,1,9,120,1547,15696,104097, %U A385581 349132,365313,33466,1,10,153,2360,30513,285828,1632915,4351944,3186444,155446,1 %N A385581 Square array read by antidiagonals: T(n,d) is the number of fixed d-dimensional polysticks of size n. %C A385581 The first 17 antidiagonals are from Mertens and Moore (2018), either directly from Table 1 or computed using the perimeter polynomials in Appendix A. T(14,5) is the only unknown value in the 18th antidiagonal. %C A385581 T(13,6) = 14054816418877200 (Mertens and Moore). %H A385581 Pontus von Brömssen, <a href="/A385581/b385581.txt">Table of n, a(n) for n = 1..153</a> (first 17 antidiagonals) %H A385581 Stephan Mertens and Cristopher Moore, <a href="https://doi.org/10.1088/1751-8121/aae65c">Series expansion of the percolation threshold on hypercubic lattices</a>, J. Phys. A: Math. Theor., 51 (2018), 475001; arXiv:<a href="https://arxiv.org/abs/1805.02701">1805.02701</a> [cond-mat.stat-mech], 2018. %H A385581 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>. %F A385581 T(n,d) = Sum_{k=1..d} binomial(n,k)*A385582(n,k) (with A385582(n,k) = 0 if d > n). %e A385581 Table begins: %e A385581 n\d| 1 2 3 4 5 6 7 8 %e A385581 ---+--------------------------------------------------------------------- %e A385581 1 | 1 2 3 4 5 6 7 8 %e A385581 2 | 1 6 15 28 45 66 91 120 %e A385581 3 | 1 22 95 252 525 946 1547 2360 %e A385581 4 | 1 88 681 2600 7065 15696 30513 53936 %e A385581 5 | 1 372 5277 29248 104097 285828 661549 1356384 %e A385581 6 | 1 1628 43086 349132 1632915 5551480 15314936 36449288 %e A385581 7 | 1 7312 365313 4351944 26817465 113045832 372033993 1028383408 %e A385581 8 | 1 33466 3186444 56062681 456137580 2386821009 9377038237 30118187174 %Y A385581 Cf. A000384 (row n=2), A385291 (polyominoes), A385582, A385583 (free). %Y A385581 Columns: A096267 (d=2), A365560 (d=3), A365562 (d=4), A365564 (d=5). %K A385581 nonn,tabl %O A385581 1,2 %A A385581 _Pontus von Brömssen_, Jul 04 2025