cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385582 Triangle read by rows: T(n,d) is the number of fixed, properly d-dimensional polysticks of size n.

This page as a plain text file.
%I A385582 #13 Jul 17 2025 23:20:26
%S A385582 1,1,4,1,20,32,1,86,420,400,1,370,4164,10368,6912,1,1626,38205,186552,
%T A385582 301840,153664,1,7310,343380,2934560,8637760,10223616,4194304,1,33464,
%U A385582 3086049,43517697,207353960,427708848,396809280,136048896
%N A385582 Triangle read by rows: T(n,d) is the number of fixed, properly d-dimensional polysticks of size n.
%H A385582 Pontus von Brömssen, <a href="/A385582/b385582.txt">Table of n, a(n) for n = 1..78</a> (first 12 rows)
%H A385582 Stephan Mertens and Cristopher Moore, <a href="https://doi.org/10.1088/1751-8121/aae65c">Series expansion of the percolation threshold on hypercubic lattices</a>, J. Phys. A: Math. Theor., 51 (2018), 475001; arXiv:<a href="https://arxiv.org/abs/1805.02701">1805.02701</a> [cond-mat.stat-mech], 2018.
%H A385582 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%F A385582 T(n,d) = Sum_{k=1..d} (-1)^(d-k)*binomial(d,k)*A385581(n,k).
%e A385582 Triangle begins:
%e A385582   n\d| 1     2       3        4         5         6         7         8
%e A385582   ---+-----------------------------------------------------------------
%e A385582   1  | 1
%e A385582   2  | 1     4
%e A385582   3  | 1    20      32
%e A385582   4  | 1    86     420      400
%e A385582   5  | 1   370    4164    10368      6912
%e A385582   6  | 1  1626   38205   186552    301840    153664
%e A385582   7  | 1  7310  343380  2934560   8637760  10223616   4194304
%e A385582   8  | 1 33464 3086049 43517697 207353960 427708848 396809280 136048896
%Y A385582 Cf. A127670 (main diagonal), A195739 (polyominoes), A365566 (free), A385581.
%K A385582 nonn,tabl
%O A385582 1,3
%A A385582 _Pontus von Brömssen_, Jul 04 2025