cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385590 Triangle read by rows, based on Fibonacci numbers: Let i > 1 be such that F(i) <= n < F(i+1); i.e., i = A130233(n). Then T(n, k) = F(i-1)^2 + 1 - (i-1) mod 2 + (n - F(i)) * F(i-2) + (k-1) * F(i-1) where F(k) = A000045(k).

This page as a plain text file.
%I A385590 #7 Jul 07 2025 20:01:36
%S A385590 1,2,3,4,6,8,5,7,9,11,10,13,16,19,22,12,15,18,21,24,27,14,17,20,23,26,
%T A385590 29,32,25,30,35,40,45,50,55,60,28,33,38,43,48,53,58,63,68,31,36,41,46,
%U A385590 51,56,61,66,71,76,34,39,44,49,54,59,64,69,74,79,84,37,42,47,52,57,62,67,72,77,82,87,92,65,73,81,89,97
%N A385590 Triangle read by rows, based on Fibonacci numbers: Let i > 1 be such that F(i) <= n < F(i+1); i.e., i = A130233(n). Then T(n, k) = F(i-1)^2 + 1 - (i-1) mod 2 + (n - F(i)) * F(i-2) + (k-1) * F(i-1) where F(k) = A000045(k).
%C A385590 Conjecture: This triangle yields a permutation of the natural numbers.
%F A385590 Conjecture: Sum_{k=1..n} (-1)^k * binomial(n-1, k-1) * T(n, k) = 0 for n > 2 and (-1)^n for n < 3.
%e A385590 Triangle T(n, k) for 1 <= k <= n starts:
%e A385590 n\ k :   1   2   3   4   5   6   7   8   9  10  11  12  13
%e A385590 ==========================================================
%e A385590    1 :   1
%e A385590    2 :   2   3
%e A385590    3 :   4   6   8
%e A385590    4 :   5   7   9  11
%e A385590    5 :  10  13  16  19  22
%e A385590    6 :  12  15  18  21  24  27
%e A385590    7 :  14  17  20  23  26  29  32
%e A385590    8 :  25  30  35  40  45  50  55  60
%e A385590    9 :  28  33  38  43  48  53  58  63  68
%e A385590   10 :  31  36  41  46  51  56  61  66  71  76
%e A385590   11 :  34  39  44  49  54  59  64  69  74  79  84
%e A385590   12 :  37  42  47  52  57  62  67  72  77  82  87  92
%e A385590   13 :  65  73  81  89  97 105 113 121 129 137 145 153 161
%e A385590   etc.
%o A385590 (PARI) T(n, k) = i=1; for(j=1,n,if(j==fibonacci(i+1),i=i+1)); (fibonacci(i-1))^2+1-(i-1)%2 + (n-fibonacci(i))*fibonacci(i-2) + (k-1)*fibonacci(i-1)
%Y A385590 Cf. A000045, A130233.
%K A385590 nonn,easy,tabl
%O A385590 1,2
%A A385590 _Werner Schulte_, Jul 03 2025